Memory cells

Yifan Yuan
06/25/2021

CMOS
logic inverters $\quad Y=\bar{X}$

Figure 14.2 (a) Block representation of the logic inverter; (b) its CMOS realization; (c) operation when the input is a logic $1 ;(\mathbf{d})$ operation when the input is a logic 0 .

The Latch

basic memory element

(a)

(b)

(c)

Figure 16.1 (a) Basic latch. (b) The latch with the feedback loop opened. (c) Determining the oper point(s) of the latch.
$\mathrm{B}+$ a positive increment $\rightarrow \mathrm{C}$
a bistable circuit: v_{w} low, v_{x} high, v_{z} low, for a stored logic 1

The set/reset (SR) Flip-Flop

The Two-Input NOR Gate

$$
Y=\overline{A+B}=\bar{A} \bar{B}
$$

Input		Output
A	B	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

Figure 14.7 A two-input CMOS NOR gate.

$\mathrm{A}=1, \mathrm{~B}=1, Q_{P A}$ and $Q_{P B}$ is OFF state, $Q_{N A}$ and $Q_{N B}$ is ON state, $\mathrm{Y}=0$ $\mathrm{A}=0, \mathrm{~B}=0, Q_{P A}$ and $Q_{P B}$ is ON state, $Q_{N A}$ and $Q_{N B}$ is OFF state, $\mathrm{Y}=1$
$A=1, B=1, O N$ state,$Y=0$

The set/reset (SR) Flip-Flop

flip-flop: cross-coupling two NOR gates

The Two-Input NOR Gate

$$
Y=\overline{A+B}=\bar{A} \bar{B}
$$

Input		Output
A	B	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

(a)

R	S	Q_{n+1}
0	0	Q_{n}
0	1	1
1	0	0
1	1	Not used

(b)
G_{1} and G_{2} are trigger inputs of the flip-flop.
logic 1: Q is high and \bar{Q} is low
For example, when the flip-flop is storing a logic 0 , $Q=0, \bar{Q}=1$
We want to set the flip-flop as a logic 1, Raise $S=1$, leave $R=0$,
It forces $\bar{Q}=0$, then $Q=1$

R	S	Q	\bar{Q}
0	0	0	1
0	0	1	0
1	0	0	1
0	1	1	0
1	1	0	0

memory state
memory state
logic 0
logic 1

The bits on a memory chip are addressable individuc
A 64-Mbit chip needs a 26 -bit address $\left(2^{26}=\right.$ $67,108,864=64 \mathrm{M}$).

One bit is stored in one memory cell

A read operation:

Activate K th word line,
All cells in row K will provide contents to the bit lines,
The small readout signal is amplified and delivered to column decoder
The column decoder selects the signal of the particular column

A write operation:

similar

Random-Access Memory (RAM) Cells

two types of MOS RAM:

Static RAMs utilize static latches as the storage cells.
Dynamic RAMs store the binary data on capacitors.
static RAMs can hold their stored data indefinitely, provided the power supply remains on; dynamic RAMs require periodic refreshing to regenerate the data stored on capacitors

Both static and dynamic RAMs are volatile; they require the continuous power supply.

Static Memory (SRAM) Cell

a flip-flop

6T cell

Figure 16.12 A CMOS SRAM memory cell.

The access transistors, $\mathrm{Q}_{5} \& \mathrm{Q}_{6}$, are turned on when the word line is selected
a flip-flop

Figure 16.12 A CMOS SRAM memory cell.

The Read Operation

Assume that the cell is storing a " 1 ", $Q=V_{D D}, \bar{Q}=0$

Precharge: raise the bitline, $B=\bar{B}=V_{D D}$ Turn on Q_{5} and Q_{6}
Current I_{5} flow through Q_{5} into $C_{\bar{Q}}$
$v_{\bar{Q}}$ rises, Q_{1} conducts,
Reach equilibrium when $v_{\bar{Q}}=V_{\bar{Q}}, I_{5}=I_{1}$
the sense amplifier detects a minimum decrement ΔV as the presence of " 1 ".

Static Memory (SRAM) Cell

a flip-flop

The Read Operation

Assume that the cell is storing a " 1 ", $Q=V_{D D}, \bar{Q}=0$

Precharge: raise the bitline, $B=\bar{B}=V_{D D}$ Turn on Q_{5} and Q_{6} Current I_{5} flow through Q_{5} into $C_{\bar{Q}}$ $v_{\bar{Q}}$ rises, Q_{1} conducts,
Reach equilibrium when $v_{\bar{Q}}=V_{\bar{Q}}, I_{5}=I_{1}$
the sense amplifier detects a minimum decrement ΔV as the presence of " 1 ".

a flip-flop

The Write Operation

Assume that the cell is storing a " 1 ", $v_{Q}=V_{D D}, \mathrm{v}_{\bar{Q}}=0$

To write a "0"

$$
B=0, \bar{B}=V_{D D}
$$

Select a cell,

$$
v_{W}=V_{D D}
$$

As Q_{6} turns on, C_{Q} discharge,
v_{Q} begins to fall,
Q_{4} conducts,
Equilibrium is reached when $I_{4}=I_{6}$.

$$
v_{Q}<V_{t n}
$$

Due to regeneration, the cell is toggled to "0" state.

Dynamic Memory (DRAM) Cell

a bit, 0 or 1, low or high voltage

one-transistor cell

Figure 16.18 The one-transistor dynamic RAM (DRAM) cell.

When the cell is storing a 1 , the capacitor is charged to $V_{D D}$; when a 0 is stored, the capacitor is discharged to zero volts

How the capacitor can be charged to the full supply voltage $V_{D D}$?

```
a write-1 operation:
Word line = V VDD + Vt
Bit line = V VD
Start charging C
C
Refresh:
The cell content is read,
the data bit is rewritten,
restoring the capacitor voltage to its proper value
refresh operation must be performed every 5 ms to 10 ms.
```


Read operation:

the bit line is precharged to $V_{D D} / 2$.
Assume a " 1 " is stored,

$$
V_{C S}=V_{D D}
$$

Due to charge conversation,

$$
C_{S} V_{C S}+C_{B} \frac{V_{D D}}{2}=\left(C_{B}+C_{S}\right)\left(\frac{V_{D D}}{2}+\Delta V\right)
$$

where ΔV is the change in the voltage on the bit line

$$
\Delta V(1) \simeq \frac{C_{S}}{C_{B}}\left(\frac{V_{D D}}{2}\right)
$$

If $V_{D D}=1.8 \mathrm{~V}, \Delta V(1)$ will be +90 mV , $\Delta V(0)$ will be about -90 mV

Read operation

Figure 16.18 The one-transistor dynamic RAM (DRAM) cell.

Read operation:

the bit line is precharged to $V_{D D} / 2$.
Assume a " 1 " is stored,

$$
V_{C S}=V_{D D}
$$

Due to charge conversation,

$$
C_{S} V_{C S}+C_{B} \frac{V_{D D}}{2}=\left(C_{B}+C_{S}\right)\left(\frac{V_{D D}}{2}+\Delta V\right)
$$

where ΔV is the change in the voltage on the bit line

$$
\Delta V(1) \simeq \frac{C_{S}}{C_{B}}\left(\frac{V_{D D}}{2}\right)
$$

Read is destructive, C_{S} will be no longer $V_{D D}$,
ΔV is amplified by the column sense amplifier
This amplified signal will restore C_{s} to $V_{D D}$
All the cells in the selected row are refreshed.

Ferroelectric RAM

non-volatile random-access memory
a memory cell is the one transistor - one capacitor ($1 \mathrm{~T}-1 \mathrm{C}$) approach that is comparable with a DRAM where the capacitor dielectric is replaced by the ferroelectric

How does a ferroelectric random-access memory (FeRAM) work?

To Becontinued IIII

Thank you!

Figure 15.5 The $i_{D}-v_{G S}$ characteristic of a short-channel NMOS transistor operating at $v_{D S}>V_{D S \text { sat }}$. Observe the quadratic and the linear portions of the characteristic. Also note that in the absence of velocity saturation, the quadratic curve would continue as shown with the broken line.

Figure 1.1 1,024-bit DRAM functional diagram.

Figure 1.10 4,096-bit DRAM pin connections.

Figure 1.9 Block diagram of a 4k DRAM.

