Twist mechanisms of screw dislocation

Xin Li 2021-04-11

Moiré patterns appear when two or more periodic grids are overlaid slightly askew,

https://www.nist.gov/news-events/news/2010/04/seeing-moire-graphene

artificially manipulate: growth, peel, transfer, overlaid & rotate

or

screw dislocation growth driven

1. Eshelby twist basing on elastic theory

2. non-Euclidean twist basing on non-Euclidean geometry

Eshelby twist

w: displacement along z direction

$$w = \frac{b}{2\pi} \tan^{-1} \frac{y}{x - \xi} - \frac{b}{2\pi} \tan^{-1} \frac{y}{x - R^2/\xi}$$

 τ : stress $\tau = \mu \nabla w$

M: torque on cross section

$$M = \mu \int \left(x \frac{\partial w}{\partial y} - y \frac{\partial w}{\partial x} \right) dx dy = \frac{1}{2} \mu b (R^2 - \xi^2)$$

under the limit r_0 (size of core)~ 0

elastic energy:
$$W = \frac{1}{2}\mu \int (grad w)^2 dx dy = \frac{1}{2}\mu \int w \frac{\partial w}{\partial n} ds = \frac{\mu b^2}{4\pi} In(R^2 - \xi^2)$$

Image force: $F = -\frac{\partial W}{\partial \xi} = \frac{\mu b^2}{2\pi} \frac{\xi}{R^2 - \xi^2}$

Eshelby, J. D. Screw dislocations in thin rods. J. Appl. Phys. 24, 176–179 (1953)

energy of screw dislocation in a cylinder

twist per unit length:

$$\alpha = \frac{\theta}{l} = \frac{M}{\mu \frac{\pi R^4}{2}} = \frac{b}{\pi R^2} \left(1 - \frac{\xi^2}{R^2} \right) \sim \frac{1}{R^2}$$

obvious in nano wir

$$W = \frac{\mu b^2}{4\pi} \left[ln(R^2 - \xi^2) - \frac{(R^2 - \xi^2)^2}{R^4} \right] - \frac{1}{2} \alpha M$$

Eshelby twist in nanowire

singe chiral branch of PbSe nanowire

Α В 100 um С D G F 10 µm 10 µm 10 µm

SEM micrpgraphs of PbS pin tree nanowires

Bierman, M. J.; Jin, S, Science 2008, 320, 1060-1063

Zhu, J., Yi,C. et al. Nature Nanotech **3**, 477–481 (2008).

Eshelby twist (consider inner surface energy)

strain energy density

dislocation strain energy

$$E = \frac{\mu b^2}{4\pi} \ln\left(\frac{R}{r}\right) = \int_r^R 2\pi r * u dr$$

suppose inner surface evaporate thickness dr uh^2 1

$$dW = 2\pi\gamma dr - \frac{\mu b}{8\pi^2} \frac{1}{r^2} * 2\pi r dr$$
$$\frac{dW}{dr} = 0 \longrightarrow 2\pi\gamma = \frac{\mu b^2}{4\pi} \frac{1}{r} \qquad b_{tube} = \sqrt{\frac{8\pi^2 \gamma r}{\mu}}$$

competion mechanism for alleviation of dislocation strain

ZnO nanotube

$$\alpha = \frac{\theta}{l} = \frac{b}{\pi R^2 + \pi r^2}$$

$$E = 2\pi\gamma r + \frac{\mu b^2}{4\pi} \ln\left(\frac{R}{r}\right) - \frac{\mu b^2}{4\pi} \frac{R^2 - r^2}{R^2 + r^2}$$

F. C. Frank, Acta Crystallogr. 4, 497 (1951)

Stephen A. Morin, Song Jin. Science 2010,328, 5977

$$E = 2\pi\gamma r + \frac{\mu b^2}{4\pi} \ln\left(\frac{R}{r}\right) - \frac{\mu b^2}{4\pi} \frac{R^2 - r^2}{R^2 + r^2}$$

$$\frac{dE}{dr} = 0$$

$$b_{total} = \sqrt{\frac{8\pi^2\gamma r}{\mu}} \left(\frac{R^2 - r^2}{R^2 + r^2}\right)$$

$$b_{twist} = b_{total} - b_{tube} = \sqrt{\frac{8\pi^2\gamma r}{\mu}} \left(\frac{R^2 + r^2}{R^2 - r^2} - 1\right)$$

$$b_{tube} = \sqrt{\frac{8\pi^2\gamma r}{\mu}}$$

TEM observation of screw dis- locations within ZnO NWs and the crystal behavior of NTs.

non-Euclidean twist

Triangular dislocation spiral on Euclidean and non-Euclidean surfaces illustrating the twisting process.

 $r_{proj} = kr_{c.s}$ $\theta_{proj} = \frac{\theta_{c.s}}{k}$

Yuzhou Zhao, Song Jin, Science 2020, 370, 6515, 442-445

euqation of triangle spirals

euqation of projection of triangle spirals

Simulated shapes of triangular and hexagonal supertwisted spirals with righthanded screw dislocations and different twist angles.

Experimental demonstration of supertwisted spirals on non-Euclidean surfaces

Yuzhou Zhao, Song Jin, Science 2020, 370, 6515, 442-445

AFM-phase

D

15°

30

for spirals without triangle shape

single spiral

$$\begin{split} r &= \alpha(\theta - \theta_1) + c & \qquad left \ hand \\ \theta_1 &+ 2(n-1)\pi < \theta < \theta_1 + 2n\pi \end{split}$$

 $r = \alpha(\theta_1 - \theta) + c$ right hand

 $\theta_1 - 2n\pi < \theta < \theta_1 - 2(n-1)\pi$

twisted single spiral

$$r' = k(\alpha(k\theta' - \theta_1) + c) \qquad \frac{\theta_1 + 2(n-1)\pi}{k} < \theta' < \frac{\theta_1 + 2n\pi}{k} \qquad \text{left hand}$$
$$r' = k(\alpha(\theta_1 - k\theta') + c) \qquad \frac{\theta_1 - 2n\pi}{k} < \theta' < \frac{\theta_1 - 2(n-1)\pi}{k} \qquad \text{right hand}$$

$$r_{proj} = kr_{c.s}$$
$$\theta_{proj} = \frac{\theta_{c.s}}{k}$$

twisted double spiral

1. Eshelby twist : free energy reduction from twist, applied to NW,NT

2. non-Euclidean twist : geometrical restriction of curved surface, apply to any 2D material

3. Twist mechanisms reflect discrepancy between continuum elastic theory and crystallography.