An introduction of $Nd_2Fe_{14}B$

Haohan Wang

Department of Physics and Astronomy

University of Nebraska-Lincoln

Neodymium magnet (Nd₂Fe₁₄B) is one of rare-earth-transition-metal (R-TM) systems.

Magnet	В _r (Т)	H _{ci} (kA/m)	<i>BH</i> _{max} (kJ/m ³)	<i>Т</i> _с (°С)
Nd ₂ Fe ₁₄ B	1.0–1.4	750–2000	200–440	310–400
SmCo ₅	0.8–1.1	600–2000	120–200	720
Sm(Co, Fe, Cu, Zr) ₇	0.9–1.15	450–1300	150–240	800

Method: melt-spinning or powder metallurgy/Sintering

Performance: powder metallurgy> melt-spinning

The structure is gotten from the neutron diffraction data

Neutron diffraction results for Nd₂Fe₁₄B at 293K

J.F. Herbst, J.J. Croat, F.E. Pinkerton, W.B. Yelon, Journal of Applied Physics **57**, 4086 (1985)

Unit cell of $Nd_2Fe_{14}B$ P4₂/mnm space group a =8.80 A, c =12.19 A

Atom	Site	Occupancy	x	у	Z
Nd	f	4	0.266	0.266	0.0
Nd	g	4	0.139	-0.139	0.0
Fe	k_1	16	0.224	0.568	0.128
Fe	k_2	16	0.039	0.359	0.176
Fe	\tilde{j}_1	8	0.097	0.097	0.205
Fe	j ₂	8	0.318	0.318	0.247
Fe	e	4	0.5	0.5	0.113
Fe	С	4	0.0	0.5	0.0
В	g	4	0.368	-0.368	0.0

J.F. Herbst, J.J. Croat, F.E. Pinkerton, W.B. Yelon, Phys. Rev. B 29 (1984) 4176

(a)Projection of the basal plane and first Fe layer $(z^{-1/6})$ in Nd₂Fe₁₄B. (b) Projection of the first Fe layer and the Fe(j2) atoms (z - 1/4) in Nd₂Fe₁₄B.

The moment arrangement is ferromagnetic, with all Nd and Fe moments parallel to the c axis of the tetragonal cell.

bulk moment of $35\mu B$ per Nd₂Fe₁₄B unit.

Ku~4.5MJ m⁻³

MH curve with vibrating sample magnetometer

hysteresis curves of the fully crystallized ribbons at zero-field (blue) and in an applied field of 90 kOe (black)

Hysteresis curve of the isotropic Nd– Fe–B sintered magnet (T = 300 K).

Theoretical coercivity field is 7.65T

Kesler MS, Jensen BA, etc. Magnetochemistry. 2019; 5(1):16.

E. A. Perigo, E. Gilbert, A. Michels, Acta Mater. 2015, 87, 142. Theoretical coercivity field is 7.65T Two mean methods to increase the coercivity field

reduction of the grain size

Coercivity in dependence on the average grain size for room temperature.

K. Uestener, M. Katter, W. Rodewald, IEEE Trans. Magn. 42 (2006) 2897–2899.

grain boundary diffusion process

Demagnetization curves of untreated and GBDP samples

H. Sepehri-Amin, T. Ohkubo, K. Hono, Acta Mater. 61 (2013) 1982–1990.

Conclusion

 $Nd_2Fe_{14}B$ has saturation magnetization ($\mu_0Ms = 1T^2T$) and high magnetocrystalline anisotropy (Ku²4.5MJ m⁻³).

anisotropic Nd₂Fe₁₄B sintered magnets exhibit the highest energy product (higher than 474 kJ m⁻³) of all the permanent magnetic materials.

The coercivity field is far from the theoretical value (7.65T) which is still under investigation.

The goal of our magnet program is to get a magnet comparable to $Nd_2Fe_{14}B$.