Principles of Nuclear Magnetic Resonance

Yifan Yuan 05/21/2021

Process: tune the spectrometer to the frequency of a particular magnetic nucleus, viz., ¹H, ¹³C, ¹⁹F (radio frequency), and record the absorption of energy due to transition between quantized nuclear spin energy levels

Nuclear spin quantum number (I):

Mass number	Z	I.							
Even	Even	0		- 4He	⁴ He, ¹² C, ¹⁶ O, ¹⁸ O, ³² S			gyromagnetic ratio	
Odd	Even or odd	1/2, 3/2	2, 5/2,		Г				
Even	Odd	1, 2, 3,.				nuclear	g-factor		
I=1/2 (e.g., ¹ H, ¹³ C, ¹⁵ N, ¹⁹ F)			Table 1.1 active isc Isotope	Natural abund topes with I = Natural abundance (%)	dances of som 1/2 μ (magnetic moment) ^a	e common n g _N	ruclear magnetic reson γ [10 ⁸ rad T ⁻¹ s ⁻¹]	ance— ບ (MHz at 2.35 T)	
I=3/2, ¹¹ B I =1, ² H, ¹⁴ N,			${}^{1}H$ ${}^{13}C$ ${}^{15}N$	100 1.108 0.365	2.7927 0.7022 0.4036	5.585 1.404 -0.566	2.675 0.672 -0.271	100 25.14 10.13	
gular momentum vec	tor $S = \hbar I$		¹⁹ F ³¹ P ²⁹ Si	100 100 4.71	2.6273 1.1305 -0.5555	5.255 2.261 -1.110	2.516 1.083 -0.532	94.07 40.48 19.87	

^a μ in units of nuclear magnetons = 5.05 × 10⁻²⁷ JT⁻¹.

THEORY OF NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

$E = -\mu B_0 \cos\theta \qquad (1.1)$ $\mu = -g_e \mu_B S$ $g_e = \text{Lande g-factor } (g_e \text{ is } 2.0023)$					
$\mu = -g_e \mu_B S$ g _e = Lande g-factor (g _e is 2.0023)					
$g_e = Lande g$ -factor (g_e is 2.0023)					
$g_e = Lande g$ -factor (g_e is 2.0023)					
$\mu_{\rm B} = { m Bohr}$ magneton					
$\mu_{\rm B} = {\rm eh}/{4\pi m_{\rm e}}$					
e = electronic charge					
$m_e = mass of the electron$					
$E = g_e \mu_B B_0 S$					
$\mathrm{Em}_{\mathrm{s}} = \mathrm{g}_{\mathrm{e}} \mu_{\mathrm{B}} \mathrm{B}_{\mathrm{0}} \mathrm{m}_{\mathrm{S}}$					
$E_{1/2} = g_e \mu_B B_0 / 2$					
$E_{-1/2} = -g_e \mu_B B_0/2$					
$\Delta \mathbf{E} = \mathbf{E}_{1/2} - \mathbf{E}_{-1/2} = \mathbf{g}_e \boldsymbol{\mu}_B \mathbf{B}_0 = \mathbf{h} \boldsymbol{\upsilon}$					
$E \qquad \qquad M_{s} = +1/2$ $\Delta E_{electron}$ $m_{s} = -1/2$					

For example, ¹H $\mu = 2.7927$ nuclear magnetons g_N=5.585 Constant μ_N =5.05e-27 J/T $I = \frac{1}{2}$ Assuming $B_0=2.35$ T, the interaction energy E=-33.1424e-27 J ΔE=66.28e-27 J $v = \frac{\Delta E}{h} = 66.28e-27/6.62e-34=1e8$ Hz

For **ESR**, $\mu_{\rm B}$ =9.274e-24 J/T $v = \frac{\Delta E}{h} = 6.59$ e10 Hz, microwave

Resonance frequency

Larmor precession

$$\vec{\tau} = \vec{\mu} \times \vec{B} = \gamma \vec{L} \times \vec{B}$$

 $dL = \gamma LB \sin \theta \, dt$ $dL = L \sin \theta \, d\phi$ $\omega_0 = \frac{d\phi}{dt} = \gamma B$

For ¹H, $\gamma = 2.675e+08$ rad s⁻¹T⁻¹ = 4.2574e+07 Hz/T Assume, B₀=2.35 T Then, v = 1e8 Hz

Larmor frequency = resonance frequency = RF field frequency

Larmor precession

Larmor frequency = resonance frequency = RF field frequency

1. Due to Zeeman effect and magnetic resonance

 $\Delta E = \gamma h B_{\circ}$ $E = h f_{\circ} = \gamma h B_{\circ}$ or $f_{\circ} = \gamma B_{\circ}$

2. Magnetic resonance and radio-frequency pulses Only when v_{rf} matches v_L , precession will occur.

$$\gamma_{\mathrm{n}} = rac{e}{2m_{p}} \, g_{\mathrm{n}} = g_{\mathrm{n}} \, rac{\mu_{\mathrm{N}}}{\hbar}$$

Precession of M

- 1. M can be tipped out of its initial alignment with B_0 by a perpendicular RF-field (B_1) rotating at Larmor frequency
- 2. Once tipped out of alignment, **M** will precess in the transverse plane also at the Larmor frequency.
- 3. This onset of **M**'s precession coincides with the start of an oscillating energy exchange between **B**₁, the spins, and their environments.

Precession of M

- 1. Nuclear precession is not the same as NMR
- 2. Precession of **M** is NMR
- 3. Every magnetically receptive nucleus is precessing in the earth's magnetic field (50 μ T)
- 4. Precession of the net magnetization (**M**) *is* a manifestation of resonance.

Continued application of the rotating/oscillating B_1 field results in progressive tipping Any angle by B_1 No change of magnitude of M

Flip (or Tip) Angle

Flip angle, also called **tip angle** (α), is the amount of rotation the net magnetization (**M**) experiences during application of a radiofrequency (RF) pulse.

$$\alpha = \gamma \cdot B_1 \cdot t_p$$

NUCLEAR MAGNETIC RESONANCE INSTRUMENTATION

- 1. Electromagnet
- 2. Sweep coil generator: vary applied magnetic field in a small range
- 3. Sample holder: spinning of the sample.
- 4. *RF transmitter*: The axis of the coil has to be perpendicular to the magnetic field, i.e., the RF is applied perpendicular to B_0 .
- 5. *RF receiver*: Its axis has to be perpendicular to both the magnetic field and the axis of the transmitter coil.
- 6. Read out system

 B_0

Thank you "To be continued…"