Principles of Nuclear Magnetic Resonance

Yifan Yuan

05/21/2021

Process: tune the spectrometer to the frequency of a particular magnetic nucleus, viz., ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ (radio frequency), and record the absorption of energy due to transition between quantized nuclear spin energy levels

Nuclear spin quantum number (I):

Mass number	\mathbf{Z}	\mathbf{I}		
Even	Even	0	${ }^{4} \mathrm{He},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{18} \mathrm{O},{ }^{32} \mathrm{~S}$	gyromagnetic ratio
Odd	Even or odd	$1 / 2,3 / 2,5 / 2, \ldots$		nuclear g-factor
Even	Odd	$1,2,3, \ldots$		

[^0]
THEORY OF NUCLEAR MAGNETIC RESONANCE AND ELECTRON SPIN RESONANCE SPECTROSCOPY

Nuclear magnetic resonance
Electron spin resonance

$$
\begin{aligned}
& \mathrm{E}=-\mu \mathrm{B}_{0}=-\mu \mathrm{B}_{0} \cos \theta \\
& \mu=g_{\mathrm{N}} \mu_{\mathrm{N}} \mathrm{I} \\
& \mathrm{~g}_{\mathrm{N}}=\text { nuclear g-factor } \\
& \mu_{\mathrm{N}}=\text { nuclear magneton } \\
& \mu_{\mathrm{N}}=\text { eh } / 4 \pi m_{p} \\
& e=\text { electronic charge } \\
& m_{\mathrm{p}}=\text { mass of the proton } \\
& \mathrm{E}=-g_{N} \mu_{\mathrm{N}} \mathrm{~B}_{0} \mathrm{I} \\
& \mathrm{Em}_{\mathrm{I}}=-\mathrm{g}_{\mathrm{N}} \mu_{\mathrm{N}} \mathrm{~B}_{0} \mathrm{~m}_{\mathrm{I}} \\
& \mathrm{E}_{1 / 2}=-\mathrm{g}_{\mathrm{N}} \mu_{\mathrm{N}} \mathrm{~B}_{0} / 2 \\
& \mathrm{E}-1 / 2=\mathrm{g}_{\mathrm{N}} \mu_{\mathrm{N}} \mathrm{~B}_{0} / 2 \\
& \Delta \mathrm{E}=\mathrm{E}_{-1 / 2}-\mathrm{E}_{1 / 2}=\mathrm{g}_{\mathrm{N}} \mu_{\mathrm{N}} \mathrm{~B}_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}=-\mu \mathrm{B}_{0} \cos \theta \\
& \mu=-g_{\mathrm{e}} \mu_{\mathrm{B}} \mathrm{~S} \\
& \quad \mathrm{~g}_{\mathrm{e}}=\text { Lande g-factor }\left(\mathrm{g}_{\mathrm{e}} \text { is } 2.0023\right) \\
& \mu_{\mathrm{B}}=\text { Bohr magneton } \\
& \mu_{\mathrm{B}}=\text { eh } / 4 \pi \mathrm{~m}_{\mathrm{e}} \\
& \quad \mathrm{e}=\text { electronic charge } \\
& \quad \mathrm{m}_{\mathrm{e}}=\text { mass of the electron } \\
& \mathrm{E}=\mathrm{g}_{\mathrm{e}} \mu_{\mathrm{B}} \mathrm{~B}_{0} \mathrm{~S} \\
& \mathrm{Em} \\
& \mathrm{~m}_{\mathrm{s}}=\mathrm{g}_{e} \mu_{\mathrm{B}} \mathrm{~B}_{0} \mathrm{~m}_{\mathrm{S}} \\
& \mathrm{E}_{1 / 2}=\mathrm{g}_{e} \mu_{\mathrm{B}} \mathrm{~B}_{0} / 2 \\
& \mathrm{E}-1 / 2=-\mathrm{g}_{\mathrm{e}} \mu_{\mathrm{B}} \mathrm{~B}_{0} / 2 \\
& \Delta \mathrm{E}=\mathrm{E}_{1 / 2}-\mathrm{E}_{-1 / 2}=\mathrm{g}_{\mathrm{e}} \mu_{\mathrm{B}} \mathrm{~B}_{0}=\mathrm{h} v
\end{aligned}
$$

For example, ${ }^{1} \mathrm{H}$
$\mu=2.7927$ nuclear magnetons
$g_{N}=5.585$
Constant $\mu_{N}=5.05 \mathrm{e}-27 \mathrm{~J} / \mathrm{T}$

$$
I=\frac{1}{2}
$$

Assuming $\mathrm{B}_{0}=2.35 \mathrm{~T}$,
the interaction energy
$\mathrm{E}=-33.1424 \mathrm{e}-27 \mathrm{~J}$
$\Delta \mathrm{E}=66.28 \mathrm{e}-27 \mathrm{~J}$
$v=\frac{\Delta E}{h}=66.28 \mathrm{e}-27 / 6.62 \mathrm{e}-34=1 \mathrm{e} 8 \mathrm{~Hz}$

For ESR, $\mu_{\mathrm{B}}=9.274 \mathrm{e}-24 \mathrm{~J} / \mathrm{T}$
$v=\frac{\Delta E}{h}=6.59 \mathrm{e} 10 \mathrm{~Hz}$, microwave
Resonance frequency

Larmor precession

$$
\begin{aligned}
& \tau=r M g \sin \theta \\
& d L=r M g \sin \theta d t \\
& \omega_{P}=\frac{r M g}{L} \cdot=\frac{r M g}{I \omega}
\end{aligned}
$$

$$
\begin{gathered}
\vec{\tau}=\vec{\mu} \times \vec{B}=\gamma \vec{L} \times \vec{B} \\
d L=\gamma L B \sin \theta d t \\
d L=L \sin \theta d \phi \\
\omega_{0}=\frac{d \phi}{d t}=\gamma B
\end{gathered}
$$

$$
\text { For } \begin{aligned}
{ }^{1} \mathrm{H}, \gamma & =2.675 \mathrm{e}+08 \mathrm{rad} \mathrm{~s}^{-1} \mathrm{~T}^{-1} \\
& =4.2574 \mathrm{e}+07 \mathrm{~Hz} / \mathrm{T}
\end{aligned}
$$

Assume, $\mathrm{B}_{0}=2.35 \mathrm{~T}$
Then, $v=1 \mathrm{e} 8 \mathrm{~Hz}$
Larmor frequency = resonance frequency $=R F$ field frequency

Larmor precession

Larmor frequency $=$ resonance frequency $=$ RF field frequency

1. Due to Zeeman effect and magnetic resonance

$$
\Delta E=\gamma h B_{0}
$$

$$
E=h f_{0}=y h B_{0}
$$

$$
\begin{gathered}
o r \\
f_{o}=\gamma B_{0}
\end{gathered}
$$

2. Magnetic resonance and radio-frequency pulses

 Only when $v_{r f}$ matches v_{L}, precession will occur.$$
\gamma_{\mathrm{n}}=\frac{e}{2 m_{p}} g_{\mathrm{n}}=g_{\mathrm{n}} \frac{\mu_{\mathrm{N}}}{\hbar}
$$

Precession of M

1. M can be tipped out of its initial alignment with B_{0} by a perpendicular RF-field $\left(B_{1}\right)$ rotating at Larmor frequency
2. Once tipped out of alignment, \mathbf{M} will precess in the transverse plane also at the Larmor frequency.
3. This onset of \mathbf{M} 's precession coincides with the start of an oscillating energy exchange between $\mathbf{B}_{\mathbf{1}}$, the spins, and their environments.

Precession of M

1. Nuclear precession is not the same as NMR
2. Precession of \mathbf{M} is NMR
3. Every magnetically receptive nucleus is precessing in the earth's magnetic field ($50 \mu \mathrm{~T}$)
4. Precession of the net magnetization (M) is a manifestation of resonance.

Continued application of the rotating/oscillating \mathbf{B}_{1} field results in progressive tipping
Any angle by B_{1}
No change of magnitude of M

Flip angle, also called tip angle (α), is the amount of rotation the net magnetization (M) experiences during application of a radiofrequency (RF) pulse.

$$
\alpha=\gamma \cdot B_{1} \cdot t_{p}
$$

NUCLEAR MAGNETIC RESONANCE INSTRUMENTATION

1. Electromagnet
2. Sweep coil generator: vary applied magnetic field in a small range
3. Sample holder: spinning of the sample.
4. RF transmitter: The axis of the coil has to be perpendicular to the
 magnetic field, i.e., the RF is applied perpendicular to B_{0}.
5. RF receiver: Its axis has to be perpendicular to both the magnetic field and the axis of the transmitter coil.
6. Read out system

Thank you

"To be continued..."

[^0]: μ in units of nuclear magnetons $=5.05 \times 10^{-27} \mathrm{JT}^{-1}$

