L₁O-FeNi alloy with addition composition

Haohan Wang Department of Physics and Astronomy University of Nebraska-Lincoln

L1₀ structure FeNi

Tetragonal L1₀-ordered FeNi/tetrataenite/ γ'' , is a rare-earth-free magnetic compound.

saturation magnetization is 1.6µb/magnetic atom.

The compound naturally occurs in meteorites and requires millions of year to anneal in nature.

Theoretically magnetocrystalline anisotropy constant can be in the range K1=0.5–1MJ/m³.

Phases of Fe-Ni

FeNi (any ratio) α phase : well mixed bcc FeNi (any ratio) γ phase : well mixed fcc

Phase Equilib. 17(6), 522 (1996).

Temperature, °C	Alloy	Aging time, days	Structure
900	FeNi2.5S10	15	$\gamma + \text{FeS}$
	FeNi5S10	15	$\gamma + FeS$
	FeNi10S10	15	$\gamma + FeS$
	FeNi20S10	10	γ + FeS
800	FeNi2.5810	42	$\alpha + \gamma + FeS$
	FeNi5S10	42	$\gamma + FeS$
	FeNi10S10	42	γ+FeS
	FeNi20S10	42	γ+ FeS
	FeNi30S10	42	$\gamma + FeS$
700	FeNi2.5S10	90	α + FeS
	FeNi5S10	90	$\alpha + \gamma + FeS$
	FeNi10S10	90	γ+FeS
	FeNi20S10	90	γ+FeS
	FeNi30S10	110	γ+FeS
600	FeNi2.5S10	150	α + FeS
	FeNi5S10	150	$\alpha + \gamma + FeS$
	FeNi10S10	150	$\alpha + \gamma + FeS$
	FeNi30S10	150	γ + γ")+ FeS
500	FeNi2.5S10	150	α + FeS
	FeNi5S10	100	$\alpha + \gamma + FeS$
	FeNi10S10	100	$\alpha + \gamma + FeS$
	FeNi20S10	100	$\alpha + \gamma + FeS$
	FeNi30S10	206	γ+(γ")+ FeS
400	FeNi2.5S10	165	α + FeS
	FeNi5S10	165	α + FeS
	FeNi10S10	165	$\alpha + \gamma + FeS$
	FeNi20S10	165	$\alpha + \gamma + FeS$
	FeNi30S10	165	$\gamma + \gamma' + \text{FeS}$
300	FeNi2.5S10	165	α + FeS
	FeNi5S10	165	α + FeS
	FeNi10S10	165	α + FeS + $\alpha_2(a)$
	FeNi20S10	165	$\alpha + \gamma \text{ or } \gamma'' + \text{FeS}$
	FeNi30S10	165	$\alpha + (Fe, Ni)_{9}S_{8} + FeS$

sulfur has been found to positively affect the L10 phase formation

(2.5, 5,10, 20, and 30 wt.% Ni, 10 wt. % S, balance Fe)

Method: induction melting in alumina crucibles (Ar environment)

L. Ma, D. B. Williams, and J. I. Goldstein, J. Phase Equilib. 19, 299(1998)

Table 1 Fe-Ni-S Alloys and Heat Treatments

Distance (µm)

Light optical microscope image for FeNi30S10 in 500C Ni composition profile across an FeS/ γ " interface by electron probe microanalysis.

51.5±1.6 wt% in γ"

Transmission electron microscopy SAD :γ" has fcc structure with a lattice parameter of 0.35 nm.

L. Ma, D. B. Williams, and J. I. Goldstein, J. Phase Equilib. 19, 299(1998)

 $a(\text{\AA})$ Х *c* (A) 3.494 3.864 Al Ρ 3.457 3.754 3.537 S 3.834 Ti 3.571 3.797 3.577 V 3.559 Cr 3.561 3.571 Mn 3.504 3.506 Fe 3.594 3.594 3.623 3.465 Co Ni 3.555 3.582

TABLE I. Optimized lattice constants of the considered Fe₂XNi compounds.

Basic $L1_0$ Fe₂NiX structures. The star in the center of the cell is the octahedral interstitial site in the Ni plane(no atom occupied).

Optimized lattice constants of the considered Fe₂NiX compounds.

Manchanda, P., Skomski, R., Bordeaux, N., Lewis, L., & Kashyap, A. Journal of Applied Physics **115**, 17A710 (2014)

Atomic Moments in Fe₂NiX

Magnetocrystalline anisotropies in Fe₂NiX

Manchanda, P., Skomski, R., Bordeaux, N., Lewis, L., & Kashyap, A. Journal of Applied Physics **115**, 17A710 (2014)

Conclusion

sulfur has been found to positively affect the L10 phase formation

For Fe₂NiX alloy, x=S, Cr may be an option of permanent magnet

The magnetism of the modified alloys will require further experimental and theoretical work