
Double Exchange 𝑰𝑽: 
Ligand Field Effects

Detian Yang

09/25/2020



Ligand-Field Theory

Part I: A Simple Introduction(07/31/2020)  

Part II: Molecular-orbital theory (Covalent Bond Theory)

Part III: Crystal Field theory (Electrostatic Theory)

III.I: 𝟑𝒅𝟏 Model-Based Method (07/03/2020) 

III.II: 𝟑𝒅𝟏 Symmetry-Based Method

III.III: 𝟑𝒅𝑵, 𝐍 ≥ 𝟐 Model-Based Method

II.I: Theoretical Frame for Exchange Interaction in Insulators (08/28/2020) 

II.II: Superexchange

II.III: Goodenough-Kanamori Rule

III.IV: 𝟑𝒅𝟏 Model-Based Method: Phillips-Cohen-Heine Theorem

II.IV: 𝟑𝒅𝟏 Covalent Bond Method



Part II.III: Goodenough-Kanamori Rules I.
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Exchange Interaction in Transition Metal Oxides Insulator

Theoretical Approach

Semiempirical Approach

(1) (2)

(1) Local quasi-particle including all the influence of diamagnetic lattice 

(2) Exchange Interaction between quasi-particles as perturbation 

(1) Nearest-neighbors approximation in Ligand field theory: molecular orbitals or covalent bond   

(2) Semiempirical rules to determine exchange type between two neighbor magnetic ions: 
Goodenough-Kanamori Rules



Semiempirical Approach

Step 1:

𝒅 Energy Level  splitting

Step 2:

3d Spin Configuration

Partial Bonds between 

Cations

Local symmetry(Goodenough-Kanamori rules)

Spin Order(Magnetism)

Ligand Field Theory



𝟒. 𝟒𝟒 Å

Early Empirical 𝟏𝟖𝟎° Rule: MnO, FeO, CoO, NiO, CuO…

P. W. Anderson, Phys. Rev. 79, 350 (1950)

𝟏𝟖𝟎° 𝒅𝒛𝟐 − 𝒑𝝈 bond

H. A. Kramers, Physica 1, 182 (1934)

Kramers Formula: 𝑯𝒕𝒕′ = σ𝒖,𝒖′

𝒕 𝑯𝒕𝒓 𝒖 𝒖 𝑯𝒆𝒙 𝒖′ 𝒖′ 𝑯𝒕𝒓 𝒕

(𝑬𝒖−𝑬𝒕)(𝑬𝒖′−𝑬𝒕)

𝑡, 𝑡′: spin ground states; 𝑢, 𝑢′: spin excited states;
𝐻𝑡𝑟: transition term; 𝐻𝑒𝑥: exchange term

∆෡𝑯𝟒;𝒆𝒙= − ෍

𝑹≠𝑹′,𝜎,𝜎′

𝑏
𝑹−𝑹′
2

∆𝑉
෡𝑺† 𝑹′, 𝝈 ෡𝑺 𝑹, 𝝈 ෡𝑺† 𝑹, 𝜎′ ෡𝑺 𝑹′, 𝜎′

∆𝑉: Coulomb interaction between 𝑑 spins on the same site 



Early Empirical 𝟏𝟖𝟎° Rule: Spinel Ferrites AB2O4, Difluorides MF2

≈ 125° ≈ 135°

𝑭𝒆𝟑+
𝑶
𝒅𝒛𝟐 − 𝑶𝟐− 𝒔𝒑𝟑𝝈 − 𝑭𝒆𝟑+

𝑻
𝒔𝒑𝟑 𝑴𝒏𝟐+

𝑶
𝒅𝒛𝟐 − 𝑶𝟐− 𝒑𝝈 − 𝑴𝒏𝟐+

𝑶
𝒅𝒙𝟐−𝒚𝟐

≈ 𝟏𝟑𝟓°



K. Knox, R. G. Shulman and S. Sugano, Phys. Rev. 130, 512(1963)

Crystal Field Splitting: Ionic + Covalent

Hartree-Fock Equation



Goodenough-Kanamori Rules
A. When the two ions have lobes of magnetic orbitals pointing to 
each other in such a way that  the orbitals would have a reasonably
large overlap integral, the exchange is antiferromagnetic. 

(a) When the lobes are 𝒅𝒛𝟐-type orbitals in the octahedral case, 

particularly in the “180° position” in which these lobes point 
directly to a ligand and each other, a particularly large 
superexchange is obtained

(b) When 𝒅𝒙𝒚 orbitals are in the 180° position to each other, so 

that they can interact via 𝑝𝜋 orbitals on the ligands, 
antiferro-magnetism is obtained

(c) In a 90° ligand situation, when one ion has a 𝒅𝒛𝟐 occupied 
and the other a 𝒅𝒙𝒚 , the 𝑝𝜋 for one is the 𝑝𝜎 for the other 

and strong overlap and thus antiferromagnetic exchange are
expected

B. When the orbitals are arranged in such a way that they are 
expected to be in contact but to have no overlap integral-most 
notably, a 𝒅𝒛𝟐 and a 𝒅𝒙𝒚 in 180° position, where the overlap is 

zero by symmetry-the rule gives ferromagnetic interaction which 
usually is not as strong as antiferromagnetic one.

Assumptions: 

1. The conservation of spin angular momentum
In the process of electron transfer, virtual or real.

2. The Pauli exclusion principle

3. Intraatomic spin-spin exchange is ferromagnetic

4. Double exchange 

C. Electrons of anions can transfer into empty 𝒅 orbitals of cations. 
The spins of transferred electron is parallel with the spin of the 
less-than-half full cation. 

A

B

C



Goodenough-Kanamori Rules A.(a)&(b)&B: LaFeO3 , 𝒅
𝟓

𝑭𝒆𝟑+,weak field
𝒕𝟐𝒈

𝒆𝒈

𝝐

𝜸



Goodenough-Kanamori Rules A.(b)&B&C: LaCrO3 ,SrMnO3 , 𝒅
𝟑

𝑪𝒓𝟑+, weak field 𝑴𝒏𝟒+, weak field

𝒅𝟐𝒔𝒑𝟑

𝒅𝟐𝒔𝒑𝟑



Goodenough-Kanamori Rules A.(a)&(c): NiO, 𝒅𝟖

𝑵𝒊𝟐+, weak field



Goodenough & Zhou, et al. PHYSICAL REVIEW B, VOLUME 64, 144414

𝑌1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3
𝐿𝑎1−𝑥𝑆𝑟𝑥𝑀𝑛𝑂3

?????

Study about Mixed-Valence Hexagonal Mangnites



Supplementary



Molecular Orbital,  Bond and Hybridization



Molecular-orbital Theory
Molecular Orbital,  Bond and Hybridization

MO: In molecules, a single electron moves in an

averaged field of the nuclei and other electrons and 
its motion is described by a MO.

Hartree-Fock Method: Self-consistent Field Theory 

ȁ ۧ𝝍 = 𝑪𝑨ȁ ۧ𝝋𝑨 + 𝑪𝑩ȁ ۧ𝝋𝑩LCAO: 

A B

𝝋𝑨
𝝋𝑩

𝒆−

𝒆−

Assumptions:
1. Heitler-London Method

2. NO degeneracy

෡𝑯ȁ ۧ𝝍 = 𝝐ȁ ۧ𝝍 𝝋𝑨
෡𝑯 𝝍 = 𝝋𝑨 𝝐 𝝍 𝝋𝑩

෡𝑯 𝝍 = 𝝋𝑩 𝝐 𝝍

𝝐𝑨 ≡ 𝝋𝑨
෡𝑯 𝝋𝑨 𝝐𝑩 ≡ 𝝋𝑩

෡𝑯 𝝋𝑩

𝑺 ≡ 𝝋𝑨 𝝋𝑩 𝜷 ≡ 𝝋𝑨
෡𝑯 𝝋𝑩 = 𝝋𝑩

෡𝑯 𝝋𝑨

𝝐𝑨 − 𝝐 𝜷 − 𝑺𝝐
𝜷 − 𝑺𝝐 𝝐𝑩 − 𝝐

𝑪𝑨
𝑪𝑩

= 0

𝝐𝑨 − 𝝐 𝝐𝑩 − 𝝐 − 𝜷 − 𝑺𝝐 𝟐 = 𝟎

𝝐𝒂 ≈ 𝝐𝑨 +
𝜷 − 𝑺𝝐𝑩

𝟐

𝝐𝑩 − 𝝐𝑨

𝝐𝒃 ≈ 𝝐𝑨 −
𝜷 − 𝑺𝝐𝑨

𝟐

𝝐𝑩 − 𝝐𝑨

3. 𝝐𝑩 > 𝝐𝑨;
𝜷

𝝐𝑩−𝝐𝑨
, 𝑺 ≪ 𝟏

𝜓𝑎 =
1

𝑁𝑎
𝝋𝑩 − 𝝀𝝋𝑨

𝜓𝑏 =
1

𝑁𝑏
𝝋𝑨 + 𝜸𝝋𝑩

𝜸 ≈ −
𝜷 − 𝑺𝝐𝑨
𝝐𝑩 − 𝝐𝑨

𝝀 ≈ 𝜸 + 𝑺Covalency Parameter



Molecular-orbital Theory
Molecular Orbital,  Bond and Hybridization

A B

𝝋𝑨
𝝋𝑩

𝒆−

𝒆−

𝝐𝑨

𝝐𝑩

𝝐𝒃

𝝐𝒂

Bonding MO

Anti-bonding MO

𝜳 = 𝝍𝟏
𝒃𝝍𝟐

𝒃𝜒 =
𝟏

𝑵𝒃
𝝋𝟏𝑨 + 𝜸𝝋𝟏𝑩 𝝋𝟐𝑨 + 𝜸𝝋𝟐𝑩 𝜒

≈
𝟏

𝑵𝒃
𝝋𝟏𝑨𝝋𝟐𝑨 + 𝜸 𝝋𝟏𝑨𝝋𝟐𝑩 +𝝋𝟐𝑨𝝋𝟏𝑩 𝜒 = 𝜳𝒊𝒐𝒏𝜒 + 𝜸𝜳𝒄𝒐𝒗𝜒

𝜒 ≡
1

2
ȁ ۧ↑↓ −ȁ ۧ↓↑

𝜋 bonds



Molecular-orbital Theory
A Naive Bond Model of 𝑴𝑿𝟔(𝑶𝒉): 𝝈 bond

𝒏 𝒅 electrons + 𝟏𝟐 ligand electrons = 𝒏 + 𝟏𝟐



Kanamori’s Summary



J. Kanamori, Phys. and Chem. Solids 10,87 (1959)

Kanamori’s Summary


