Double Exchange III: Gennes Theory

Detian Yang 06/05/2020

P.G.de Gennes, Phys. Rev. 118, 141 (1960)

Double Exchange: From Two-ion Case to Antiferromagnetic Lattices

$$|b|(\sim 0.5 - 1 \, eV) \gg kT_c(\sim 0.1 eV)$$

Ferromagnetic coupling: $\Delta E_D(\vec{S}_1, \vec{S}_2) = -|\boldsymbol{b}| co$

Electronic states?
 Other exchange interactions?
 Crystal field effects ??

???

 $(La_{1-x}^{3+}Ca_x^{2+})(Mn_{1-x}^{3+}Mn_x^{4+})O_3$

 $[\]langle \vec{S}_1, \vec{S}_2 \rangle = \theta$ $\hat{b} = \langle R_1 | \Delta H | R_2 \rangle$

Double Exchange: Outlines

Assumptions:

1. Tight-binding Approximation: Double exchange energy

 $\psi_{3d,\vec{k}} = \frac{1}{\sqrt{N}} \sum_{j}^{N} e^{i\vec{k}\cdot\vec{R}_{j}} |\vec{R}_{j}\rangle$

2. Landau Model: competition between normal exchange and double exchange

3. Ignore crystal field effects

Mn 3d band splitting, Mn3d-O2p bonding, Jahn-Teller distortion...

- 4. Non-degenerate 3d-band
- **5.** Intra-atomic exchange integral $\gg b$
- 6. Magnetic ion spin S_i as classical vectors
- 7. Ignore phonon excitation of ions and Coulomb correlation between carriers
- 8. Ignore bound states of carriers

	Two-ion case	Real lattice
Unperturbed Orbital state	$\{ R_1\rangle, R_2\rangle\}$	Wannier functions $\{ \vec{R}_{j}\rangle\}$
transfer integral	$\langle \boldsymbol{R_1} \Delta \boldsymbol{H} \boldsymbol{R_2} \rangle = \widehat{\boldsymbol{b}}$	$\langle \boldsymbol{R}_i \Delta \boldsymbol{H} \boldsymbol{R}_j \rangle = \widehat{\boldsymbol{b}}_{ij}$
Electronic state	$\psi_{12} = \frac{1}{\sqrt{2}} [R_1\rangle S + \frac{1}{2}, S'_{1z}\rangle - R_2\rangle S + \frac{1}{2}, S'_{2z}\rangle]$	$ \Psi_{3d,\vec{k}=0} \approx \prod_{j=1}^{n.b.} \bigotimes \frac{1}{\sqrt{2}} \left[R_i\rangle S + \frac{1}{2}, S'_{iz} \right] - R_j\rangle S + \frac{1}{2}, S'_{jz} \right] $
Energy	$kT_c \ll b ,$ $- b \cos{rac{ heta}{2}}$	$x \ll 1, \vec{k} = 0$ $E_{\vec{k}=0} = -z'b' - zb\cos\frac{\theta}{2}$

z, *z*': nearest neighbors in the same and different layers, respectively; Θ : fixed angle between spins of neighbor layers; $n.b. \equiv$ nearest neighbors of site *i*, including *i*

Double Exchange: Semiclassical Molecular Field Theory Other Exchange energy term

$$E_{ex} = N\left[-\left(z'J'S^{2}\right) - \left(zJS^{2}\cos\Theta\right)\right]$$

Landau Model

$$E = -N\left[z'J'S^{2} + xz'b' + z|J|S^{2} + \frac{zx^{2}b^{2}}{8|J|S^{2}}\right]$$

z, *z*': nearest neighbors in the same and adjacent layers, respectively; Θ: fixed angle between spins of neighbor layers

Double Exchange: Potential Experiments

Two-sublattice : A stable arrangement

(1) Spontaneous Magnetization:

$$M = I\cos\frac{\Theta}{2}$$

(2) Isotropic susceptibility in high fields: $E_{Z} = -HI \cos \frac{\Theta}{2}$ $E' = E_{Z} + E_{ex} + E_{D} = -HI \cos \frac{\Theta}{2} + N[-(z'J'S^{2}) - (zJS^{2}\cos\Theta)] - Nxz'b'$

$$-Nxzb\cos\frac{\theta}{2}$$
$$\frac{E'}{2\Theta} = 0, \frac{\delta^2 E'}{\delta \Theta^2} > 0; \ \cos\frac{\theta}{2} = \frac{bx}{4|J|S^2} + \frac{HI}{4Nz|J|S^2}$$

$$\chi = -\frac{\partial^2 E'}{\partial H^2} = \frac{I^2}{4Nz|J|S^2}$$

FIG. 1. Allowed configurations for the magnetizations I_1 , I_2 , I_3 , \cdots , I_n , \cdots corresponding to successive layers. The angle between I_n and I_{n+1} is equal to Θ_0 . (a) disordered; (b) two sublattice system; (c) helical arrangement. (a), (b), and (c) are degenerate from the standpoint of nearest neighbor exchange and double exchange. External fields, anisotropy energies, or small ferromagnetic couplings between next nearest layers favor configuration (b). Antiferromagnetic coupling between next nearest layers favors (c).

I. S. Jacobs, J. Phys. Chem. Solids 11, 1. (1959) O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939). **Double Exchange: Semiclassical Molecular Field Theory Two-sublattice : A stable arrangement** (3) Neutron diffraction for $(La_{1-x}^{3+}Ca_{x}^{2+})(Mn_{1-x}^{3+}Mn_{x}^{4+})O_{3}$ $S = |\vec{S}_{1}| = Scattering Intensity \propto |\vec{u}_{\pm} = \hat{k} \times (\vec{S}_{1} \pm \vec{S}_{2})|^{2}$

 \vec{u}_+ : "Lattice reflections"(L), in phase

 \vec{u}_{-} : "Superlattice reflections"(S), opposite in phase

$$\widehat{k} \perp (\overrightarrow{S}_1 \pm \overrightarrow{S}_2) \qquad \begin{aligned} u^2_{ferro} &= S^2 cos^2 (\Theta/2) \\ u^2_{antif} &= S^2 sin^2 (\Theta/2) \end{aligned}$$

Model:
$$\cos \frac{\theta}{2} = \frac{bx}{4|J|S^2}$$
 $\frac{b}{|J|S^2} \sim 16$
 $x < 0.25$

FIG. 3. Determination of the angle Θ_0 between sublattices in the mixed manganites $\operatorname{La}_{1-x} \operatorname{Ca}_x \operatorname{MnO}_3$ with low Mn^{4+} content. The experimental points are deduced from measurements of "ferromagnetic" and "antiferromagnetic" neutron line intensities by Wollan and Koehler.² The straight line corresponds to Eq. (9) with $b/|J|S^2=16$.

E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955)

Two-sublattice : Magnetic behavior at finite temperature $\lambda = |\vec{\lambda}_1| = |\vec{\lambda}_2|$

$$\omega_n(\vec{S}) = \frac{1}{v}e^{-\frac{\vec{\lambda}_n\cdot\vec{S}}{S}}, n = 1, 2 \quad v = \frac{2sinh\lambda}{\lambda}$$

$$F = -TS + E_D + E_{ex}$$

$$S = -k_B N \int_{-1}^{1} \omega_n(x) ln \omega_n(x) dx = -k_B N (\lambda m - ln v)$$

$$m = \frac{1}{v} \int_0^{\pi} d\alpha \sin\alpha \cos\alpha \, e^{-\lambda \cos\alpha} = -\frac{1}{\lambda} + \cot\alpha h\lambda$$

$$E_{ex} = -Nm^2[z'J' + zJ\cos\Theta]$$

Double Exchange: Semiclassical Molecular Field Theory **Two-sublattice : Magnetic behavior at finite temperature** $\lambda = |\vec{\lambda}_1| = |\vec{\lambda}_2| \propto \frac{1}{r}$ \overline{S}_1 $F = -TS + E_D + E_{ex}$ $\widehat{E}_{\overrightarrow{k}} = \sum_{j}^{n.b.} e^{i\overrightarrow{k} \cdot (\overrightarrow{R}_j - \overrightarrow{R}_i)} \widehat{b}_{ij} = \sum_{j}^{n.b.} \widehat{b}_{ij} \qquad \overrightarrow{k} \cdot (\overrightarrow{R}_j - \overrightarrow{R}_i) \ll 1 \qquad e^{i\overrightarrow{k} \cdot (\overrightarrow{R}_j - \overrightarrow{R}_i)} \approx 1$ θ_1 $\vec{\lambda}_2$ 0 Thermal average for tow sublattice case: $E_D = N \sum_{i=1}^{n.p.} -|b_{ij}| \left\langle \cos \frac{\theta_{ij}}{2} \right\rangle = -Nz'b' \left\langle \cos \frac{\theta'}{2} \right\rangle - Nzb \left\langle \cos \frac{\theta}{2} \right\rangle$ θ_2 \vec{S}_2 $\left\langle \cos\frac{\theta}{2} \right\rangle = \frac{-2}{i_0^2(-i\lambda)} \sum_{i=1}^{\infty} \frac{j_l^2(-i\lambda)P_l(\cos\theta)}{(2l-1)(2l+3)}; \quad \left\langle \cos\frac{\theta'}{2} \right\rangle = \frac{-2}{j_0^2(-i\lambda)} \sum_{l=0}^{\infty} \frac{j_l^2(-i\lambda)}{(2l-1)(2l+3)} \qquad \langle A \rangle \equiv \frac{1}{v} \int_0^{\pi} d\alpha \sin\alpha A e^{-\lambda \cos\alpha}$ ∞

$$E_D = \frac{2Nxz}{j_0^2(-i\lambda)} \sum_{l=0}^{\infty} \frac{j_l^2(-i\lambda)P_l(\cos\theta)}{(2l-1)(2l+3)} [z'b'+zbP_l(\cos\theta)]$$

Two-sublattice : Magnetic behavior at finite temperature

$$F = -T \mathbb{S} + E_D + E_{ex} = k_B NT (\lambda m - lnv) + \frac{2Nxz}{j_0^2 (-i\lambda)} \sum_{l=0}^{\infty} \frac{j_l^2 (-i\lambda) P_l(\cos\theta)}{(2l-1)(2l+3)} [z'b' + zbP_l(\cos\theta)]$$
$$-Nm^2 [z'J' + zJ\cos\theta]$$

$$\frac{\delta F}{\delta u} = 0, \qquad m^2 + \frac{\xi}{j_0^2(-i\lambda)} \sum_{l=0}^{\infty} \frac{j_l^2(-i\lambda)}{(2l-1)(2l+3)} \frac{dP_l(\cos\theta)}{dv} = 0 \qquad u = \cos\theta \qquad \xi = \frac{bx}{|J|S^2}$$

(1) Low temperature: $\lambda \propto \frac{1}{T} \to \infty$ $-1 < u = \cos \Theta < 1$ Canted spin arrangement

(2) High temperature: $\lambda \propto \frac{1}{T} \rightarrow 0$ u > 1: ferromagnetic ; u < -1: antiferromagnetic ;

$$\mathbf{u} = \mathbf{1}, \frac{1}{\xi} = \frac{-1}{j_0^2(-i\lambda)m^2} \sum_{l=0}^{\infty} \frac{j_l^2(-i\lambda)l(l+1)}{(2l-1)(2l+3)} \quad \mathbf{u} = -1, \frac{1}{\xi} = \frac{-1}{j_0^2(-i\lambda)m^2} \sum_{l=0}^{\infty} \frac{j_l^2(-i\lambda)(-1)^{l+1}l(l+1)}{(2l-1)(2l+3)}$$

Double Exchange: Semiclassical Molecular Field Theory Two-sublattice : Magnetic behavior at finite temperature

If
$$u > 1$$
, $u < -1$ $F = F_0 + F_2 m^2 + F_4 m^4 + \cdots$

$$F_2 = N \left[\frac{3}{2} k_B T - S^2 (z'J' + zJu) - \frac{2x}{5} ((z'b' + zbu)) \right] \quad F_4 = N \left[\frac{9}{20} k_B T + \frac{6x}{7} ((z'b' + zbu)) \right], u = \pm 1$$

Double Exchange: Semiclassical Molecular Field Theory Two-sublattice : Magnetic behavior at finite temperature

FIG. 4. Square of the relative saturation $m_{T_1} = M_{T_1}/M_0$ of each sublattice at the lower transition point T_1 , as a function of $\xi = bx/|J|S^2$.

FIG. 5. Typical "magnetic phase diagram" for a layer antiferromagnet. Theoretical values of T_1 , T_c , and T_N are given in the text.

Supplementary

Bloch Theorem: Symmetry + QM

0. Define the Abelian translation group { Î_R | R = n_iā_i, n_i ∈ Z }, where {ā_i} is a Bravais lattice In r representation, for any state ψ(r), T_Rψ(r) = ψ(r + R).
1. Î_R translation symmetry: [Ĥ, Î_R] = 0

1.1 $\hat{H} \psi_{\varepsilon,\vec{k}}(\vec{r}) = \varepsilon \psi_{\varepsilon,\vec{k}}(\vec{r}); \hat{T}_{\vec{R}} \psi_{\varepsilon,\vec{k}}(\vec{r}) = \psi_{\varepsilon,\vec{k}}(\vec{r} + \vec{R}) = e^{i\vec{k}\cdot\vec{R}}\psi_{\varepsilon,\vec{k}}(\vec{r}); \vec{k} = x_i\vec{b}_i, \vec{a}_i \cdot \vec{b}_j = 2\pi\delta_{ij}^{[1]}$ 1.2 Common eigenstates $\psi_{\varepsilon,\vec{k}}(\vec{r})$ as a complete basis 1.3 Bragg's law: 1.3 $\psi_1 = \left(\psi_{\varepsilon,\vec{k}}(\vec{r}) + \psi_{\varepsilon,\vec{k}'}(\vec{r})\right)$

 $\begin{array}{ll} 1.3.1 \quad \widehat{T}_{\overrightarrow{R}}\psi_{1} and\psi_{1} correspond to the same physical state \\ 1.3.2 \text{ For any allowed } \overrightarrow{R}, \ \overrightarrow{k} and \ \overrightarrow{k'}, \ \widehat{T}_{\overrightarrow{R}}\psi_{1} = \widehat{T}_{\overrightarrow{R}}\psi_{\varepsilon,\overrightarrow{k}}(\overrightarrow{r}) + \widehat{T}_{\overrightarrow{R}}\psi_{\varepsilon,\overrightarrow{k'}}(\overrightarrow{r}) = e^{i\overrightarrow{k}\cdot\overrightarrow{R}}\psi_{\varepsilon,\overrightarrow{k}}(\overrightarrow{r}) + e^{i\overrightarrow{k'}\cdot\overrightarrow{R}}\psi_{\varepsilon,\overrightarrow{k'}}(\overrightarrow{r}) = e^{i\overrightarrow{k}\cdot\overrightarrow{R}}\psi_{\varepsilon,\overrightarrow{k}}(\overrightarrow{r}) + e^{i(\overrightarrow{k'}-\overrightarrow{k})\cdot\overrightarrow{R}}\psi_{\varepsilon,\overrightarrow{k'}}(\overrightarrow{r}) \\ e^{i\overrightarrow{k}\cdot\overrightarrow{R}}\left(\psi_{\varepsilon,\overrightarrow{k}}(\overrightarrow{r}) + e^{i(\overrightarrow{k'}-\overrightarrow{k})\cdot\overrightarrow{R}}\psi_{\varepsilon,\overrightarrow{k'}}(\overrightarrow{r})\right) \end{array}$

 $e^{i(\vec{k}'-\vec{k})\cdot\vec{R}} = 1 \text{ or } (\vec{k}'-\vec{k})\cdot\vec{R} = 2\pi n, n \in Z \text{ or } \vec{k}'-\vec{k} = \vec{G} = m_i\vec{b}_i, m_i \in Z$

- 2. Energy level and state wavefunction^[2] 2.1 $\psi_{\varepsilon,\vec{k}}(\vec{r}) = u_{\varepsilon,\vec{k}}(\vec{r})e^{i\vec{k}\cdot\vec{r}}, u_{\varepsilon,\vec{k}}(\vec{r}) \equiv \sum_{\vec{G}} C(\vec{k}-\vec{G})e^{-i\vec{G}\cdot\vec{r}}$
- 2.2 All info included in the 1st Brillouin zone $\varepsilon(\vec{k}) = \varepsilon(\vec{k} + \vec{G})$

$$\psi(\vec{r}) = \sum_{\vec{k}} C(\vec{k}) e^{i\vec{k}\cdot\vec{r}} \qquad V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} e^{i\vec{G}\cdot\vec{r}}$$

Schrodinger equation: $\left(\frac{\hbar^2 k^2}{2m} - \varepsilon\right) C(\vec{k}) + \sum_{\vec{G}} C(\vec{k} - \vec{G}) V_{\vec{G}} = 0$

Tight-binding Model^[3]: large interatomic distance limitation

Narrow bands separated by large gaps

1. Band Theory

2. Eigenfunction as a linear combination of atomic orbitals

2.1) single atomic orbital case

$$\psi_{m,\vec{k}}(\vec{r}) = \frac{1}{\sqrt{N(1 + \sum_{\vec{R}_l \neq 0} e^{i\vec{k} \cdot \vec{R}_l} \alpha_{m,m}(\vec{R}_l))}} \sum_j^N e^{i\vec{k} \cdot \vec{R}_j} \varphi_m(\vec{r} - \vec{R}_j);$$

mic overlap integrals of the same orbital m from different atoms $\alpha_{m,m}(\vec{R}_l)$

Atomic overlap integrals of the same orbital m from different atoms $\alpha_{m,m}(R_l) \equiv \int d^3r \varphi_m(\vec{r})^* \varphi_m(\vec{r} - \vec{R}_j) \ll 1$

2.2) Hybridization case $\psi_{m,\vec{k}}(\vec{r}) = \sum_{n=1}^{\infty} a_{mn,\vec{k}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e^{i\vec{k}\cdot\vec{R}_{j}} \varphi_{n}(\vec{r}-\vec{R}_{j})$

where the sum over a complete set of atomic orbitals, including continuum scattering states; $a_{mn,\vec{k}}$ describes the mixing of m-th and n-th bands, and could be solved by diagonalizing the Hamiltonian.

$$B. H = \sum_{j}^{N} H_{at} \left(\vec{r} - \vec{R}_{j} \right) + \Delta U(\vec{r}) \quad H_{at}(\vec{r} - \vec{R}_{j}) \equiv \frac{p_{j}^{2}}{2m_{j}} + v(\vec{r} - \vec{R}_{j})$$

$$\varepsilon_{m,\vec{k}} = E_{m} + \frac{\beta_{m,m} + \sum_{\vec{R}_{l} \neq 0} e^{i\vec{k}\cdot\vec{R}_{l}} \gamma_{m,m}(\vec{R}_{l})}{N(1 + \sum_{\vec{R}_{l} \neq 0} e^{i\vec{k}\cdot\vec{R}_{l}} \alpha_{m,m}(\vec{R}_{l}))}$$

$$\beta_{m,m} \equiv \int d^{3}r \varphi_{m}^{*}(\vec{r}) \Delta V(\vec{r}) \varphi_{m}(\vec{r}) \qquad \gamma_{m,m}(\vec{R}_{l}) \equiv \int d^{3}r \varphi_{m}^{*}(\vec{r} - \vec{R}_{l}) \Delta V(\vec{r}) \varphi_{m}(\vec{r})$$

$$\Delta V(\vec{r}) \equiv \sum_{\vec{R}_{l} \neq 0} v(\vec{r} - \vec{R}_{l}) + \sum_{\vec{R}_{l}} \Delta U(\vec{r} + \vec{R}_{l})$$

Tight-binding Model: Energy for Double Exchange

$$\Delta H | \psi_{3d,\vec{k}} \rangle = E_{\vec{k}} | \psi_{3d,\vec{k}} \rangle \qquad (\vec{R}_i | \Delta H | \psi_{3d,\vec{k}} \rangle) = E_{\vec{k}} \langle \vec{R}_i | \psi_{3d,\vec{k}} \rangle \qquad \langle R_i | \Delta H | R_j \rangle = \hat{b}_{ij}$$

$$l.h.s = \left\langle \overline{R}_i \right| \Delta H \left| \psi_{3d,\overline{k}} \right\rangle = \frac{1}{\sqrt{N}} \sum_{j}^{N} e^{i\overline{k}\cdot\overline{R}_j} \left\langle \overline{R}_i \right| \Delta H \left| \overline{R}_j \right\rangle = \frac{1}{\sqrt{N}} \sum_{j}^{n.b.} e^{i\overline{k}\cdot\overline{R}_j} \widehat{b}_{ij}$$

 $n. b. \equiv$ nearest neighbors of site *i*, including *i*

Wannier Function: from Bloch states to local orbitals Periodicity of crystal lattice: $\psi_{m,\vec{k}}(\vec{r}) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} a_m(R_j,\vec{r}) e^{i\vec{k}\cdot\vec{R}_j}$

Localized orbitals as Wannier function:

$$a_m(R_j, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{k}} \psi_{m, \vec{k}}(\vec{r}) e^{-i\vec{k}\cdot\vec{R}_j}$$

1. $a_m(R_j, \vec{r}) = a_m(\vec{r} - R_j)$, i.e. \forall lattice vector $R_n, a_m(R_j, \vec{r}) = a_m(R_j + R_n, \vec{r} + R_n)$ *Hint*: $\psi_{\epsilon,\vec{k}}(\vec{r} + R_n) = e^{i\vec{k}\cdot R_n}\psi_{\epsilon,\vec{k}}(\vec{r})$;

2. An orthonormal basis: $\int d^3r a_m^*(R_k,\vec{r})a_m(R_j,\vec{r}) = \delta_{R_k,R_j}$

3. Since Bloch states defined up to an overall phase $\psi_{m,\vec{k}}(\vec{r}) \rightarrow e^{i\theta}\psi_{m,\vec{k}}(\vec{r})$, Wannier function can be chosen as the maximally-localized set: $a_m(R_j,\vec{r})$ localized around R_j and rapidly goes to zero away from R_j . For 1-dimension and separable potential cases in higher dimensions, the maximally-localized set is unique.^[4]

References

[1] <u>https://www.tf.uni-kiel.de/matwis/amat/q_mech/kap_1/backbone/r_se24.html</u>
[2] <u>https://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/basics/m2_1_2.html</u>
[3] <u>https://www.cond-mat.de/events/correl12/manuscripts/pavarini.pdf</u>
[4] W. Kohn (1959). "Analytic Properties of Bloch Waves and Wannier Functions". Physical Review. **115** (4): 809–821.