Recombination process in photodoping

Xuanyuan Jiang

2020-02-07

What is photodoping?

Photoexcited electrons or holes trapped by defect levels

Why we want to study photodoping?

X. Lin, nat. matt. 2017, 16 1209-1215

Processes of recombination via traps

FIG. 1. The basic processes involved in recombination by trapping: (a) electron capture, (b) electron emission, (c) hole capture, (d) hole emission.

W. SHOCKLEY & W. T. READ, Jr, PHYS. REV. 1952, 87, 5

Electron capture rate

Probability of an electron be captured by traps in dE range per unit volume $P_{cn} = f_{pt}N_tc_n(E)f(E)N(E)dE$

Probability of an electron be emitted from traps in dE range per unit volume $P_{en} = f_t N_t e_n(E) f_p(E) N(E) dE$

From thermal equilibrium $F_n = F_t$, $P_{cn} = P_{en}$; Total rate of electron capture

$$U_{cn} = P_{cn} - P_{en} = \left[1 - \exp\left(\frac{F_t - F_n}{k_B T}\right)\right] f_{pt} N_t \int_{E_c}^{\infty} f(E) N(E) c_n(E) dE$$

TABLE I. Symbols.

b =ratio of electron to hole mobility n =density of electrons in conduction band p = density of holes in valence band $E_v =$ energy of highest valence band level E_c = energy of lowest conduction band level $E_q = \text{energy gap} = E_c - E_v$ E_t = effective energy level of traps (Appendix B) F = Fermi level for thermal equilibrium F_n = quasi-Fermi level (q.f.l.) for electrons $F_p = q.f.l.$ for holes $F_t = q.f.l.$ for traps n_i = density of electrons in an intrinsic specimen N_t = density of traps N(E) = density of energy levels per unit energy range N_e = effective density of levels for conduction band N_{v} = effective density of levels for valence band f_t = fraction of traps occupied by electrons f_{pt} = fraction of traps occupied by holes

When $F_n > F_t$, the electron density is larger in CB than in traps, so the electrons are captured

For nondegenerate statistics, $f_p \rightarrow 1$ in CB, so the expression is simplified

$$\begin{split} U_{cn} &= C_n f_{pt} n - C_n f_t n_1, n = N_C exp \frac{F_t - E_C}{k_B T}, n_1 = N_C exp \frac{E_t - E_C}{k_B T} \\ U_{cp} &= C_p f_t p - C_p f_{pt} p_1 \end{split}$$

Recombination time

From steady state condition $U_{cn} = U_{cp}$ Recombination rate

$$U = U_{cn}U_{cp} = C_nC_p(pn - p_1n_1)/[C_n(n + n_1) + C_p(p + p_1)]$$
$$p_1n_1 = N_cN_v \exp\left(\frac{E_v - E_c}{k_BT}\right) = N_cN_v \exp\left(\frac{-E_G}{k_BT}\right) = n_i^2$$

When photoexcited density change δn is small,

$$\tau = \frac{\delta n}{U} = \tau_{P0} \frac{n_0 + n_1}{n_0 + p_0} + \tau_{n0} \frac{p_0 + p_1}{n_0 + p_0}, \tau_{P0} = \frac{1}{C_p}, \tau_{n0} = \frac{1}{C_n}$$

n n-type,
$$F_0 > E_i$$
, $n_0 \gg p_0$
 $\tau = \tau_{P0} \frac{n_0 + n_1}{n_0} = \tau_{P0} \left(1 + exp \frac{E_t - F_0}{k_B T} \right)$

In p-type,
$$F_0 < E_i$$
, $n_0 \ll p_0$
 $\tau = \tau_{n0} + \tau_{P0} \frac{n_1}{p_0}$
 $= \tau_{n0} + \tau_{P0} exp \frac{E_t + F_0 - 2E_i}{k_B T}$,

TABLE I. Symbols.

b = ratio of electron to hole mobility n =density of electrons in conduction band p =density of holes in valence band E_v = energy of highest valence band level E_c = energy of lowest conduction band level $E_q = \text{energy gap} = E_c - E_v$ E_t = effective energy level of traps (Appendix B) F = Fermi level for thermal equilibrium F_n = quasi-Fermi level (q.f.l.) for electrons $F_p = q.f.l.$ for holes $F_t = q.f.l.$ for traps n_i = density of electrons in an intrinsic specimen N_t = density of traps N(E) = density of energy levels per unit energy range N_c = effective density of levels for conduction band N_v = effective density of levels for valence band f_t = fraction of traps occupied by electrons f_{nt} = fraction of traps occupied by holes

When photoexcited density change δn is large, in n-type,

$$\frac{\tau}{\tau_0} \left(1 + \frac{\delta n}{n_0} \right) = 1 + \frac{\delta n (\tau_{P0} + \tau_{n0})}{\tau_{P0} (n_0 + n_1)}$$

Recombination rate linear to photoexcited charge carriers.

Dependence of recombination time

 $F_0 > 2E_i - E_t$, $p_0 \ll n_1$ Traps are mostly empty but there are not a sufficient number of holes to recombine with every trapped electron before the latter is re-emitted

to CB

 $F_0 < 2E_i - E_t$, $p_0 \gg n_1$ All traps are empty and the number of holes is large enough that a hole will immediately recombine with every trapped electron

 $F_0 < E_t, n_0 \ll n_1$

recombination is limited by

that an empty trap cannot

capture a hole.

Traps are largely empty,

 $F_0 > E_t$, $n_0 \gg n_1$ Traps are full, all set to capture holes, and sufficient electrons that an electron recombines at once with every hole is trapped.

Doping level and laser energy dependence

Y. Li, ACS Photonics 2015, 2, 1091–1098

J. Cho, PNAS 2014, 111, 2094-2099

Recombination resistances in various traps

"recombination resistances." For this purpose we note that the quasi-Fermi levels are analogous to voltages and the U's to currents. We thus introduce

$$R_{n} = (F_{n} - F_{t})/U_{cn} \doteq kT/f_{pt}n_{0}C_{n}, \qquad (7.1)$$
$$R_{p} = (F_{t} - F_{p})/U_{cp} \doteq kT/f_{t}p_{0}C_{p}, \qquad (7.2)$$

the approximations holding for differences in the F's small compared to kT. For the steady state the recombination currents are equal and we have

$$U(R_n + R_p) = (F_n - F_t) + (F_t - F_p) = F_n - F_p, \quad (7.3)$$

an equation analogous to that for resistances in series.

FIG. 3. Variation of recombination resistances with F_0 . Solid curve represents total resistance $R = R_p + R_n$; dashed curves give R_p and R_n . Expressions in [] are approximations valid for the straight segments of the curves.

The sloping portions of the $\ln R vs F_0$ plot correspond to constant lifetime. This result may be seen from the relationship between R and τ which is derived as follows:

$$\tau = \delta n / U = \delta n R / (F_n - F_p), \qquad (7.4)$$

and

$$\delta(np) = n_i^2 \{ [\exp(F_n - F_p)/kT] - 1 \}$$

= $n_i^2 (F_n - F_p)/kT \doteq (n_0 + p_0) \delta n, \quad (7.5)$

so that

$$\tau = n_i^2 R / k T (n_0 + p_0). \tag{7.6}$$

On Fig. 3 we have also drawn $\ln(n_0 + p_0)$; the straight line portions have slopes of (1/kT), so that they cancel the slopes of $\ln R$ to give the constant lifetime portions of Fig. 2.

The effect of a number of different sorts of traps may be considered on the same basis. For each variety, the recombination is represented by a pair of resistances in series and these series pairs are combined in parallel for the entire system.