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1. Space-charge-limited flow

* One-carrier space-charge-limited flow without traps. (electrons)

* One-carrier space-charge-limited flow with traps.

* Two-carrier space-charge-limited flow without traps or recombination centers. (cathode electrons, anode holes)
* Two-carrier space-charge-limited flow with recombination centers

2. One-carrier space-charge-limited

Definition: if an electron injecting contact is applied to an insulator, electrons will travel from the metal into the
conduction band of the insulator and form a space-charge similar to that of a vacuum diode.
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. Theory

At low voltages where the injected carrier density is less than ng, which is the
thermally generated free carrier density, Ohm’s law will be obeyed:

] = enop; (1)

At transition voltage, Vi, the transition from Ohm’s law to Mott and Gurney law

takes place:

9 V2
J=gkuz (2)
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s: film thickness

(: mobility

V: voltage

k: dielectric constant

n: free electron density
D: diffusion coefficient

The theory is based on purely field driven currents and diffusion current:
] = neuE — De() 3)




3. Shallow and deep trapping
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3. Shallow and deep trapping

Trapped charge density (occupancy of trap):

N
nt = 1 N oY . . .
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3. Shallow and deep trapping

Thus the ratio of free to trapped charge is

n(x) Neexpl (5 ree) T TEC)]
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0 can be as low as 1077, very large effect.
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The charge which has been injected into the insulator can be

distributed in three parts:

(1) Free charge in the conduction band € Shallow Trap
(2) Trapped charge above the Fermi level Epm = = = = ——
(3) Trapped charge in the states between the initial Fermi level

and the final Fermi level.
Assumption that all injected charge will in fact be trapped in (3).
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4. Experiments
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Fig. S2 Typical J-E characteristics of a Au/BFO/Au structure
(BFO1) at 300 K, (b) SCLC.
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4. Experiments

Amorphous selenium (20 u)/ tin oxide / glass substrate

For film 2, the dependence of current on voltage was between V and V2 al lower
voltages.
[ =22x10711ye?/311

I =13x10"1ye?/570

For voltages less than 10 v the current was probably a mixture of ohmic and
SCLC. This suggests that the thermal equilibrium Fermi level was less than

kT above a uniform distribution of hole capture levels

Hartke, Jerome Luther. "Drift mobilities of electrons and holes and space-charge-limited
currents in amorphous selenium films." Physical Review 125.4 (1962): 1177.
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F16. 11. Space-charge-limited currents in amorphous selenium
films having gold hole-injecting contacts.



Thanks and questions?



Derivation of Mott and Gurney law

The theory is based on purely field driven currents and diffusion current: .
dn p: mobility
J =nuE —D(=") (3) n: charge carrier density
D: diffusion coefficient
k: dielectric constant

Using Gauss’s law and

- ue() () o

Using Einsteins’ relation

D = ngT
J = kuE <dE> Ktk T (d2E> —i—>
dx dx? ) -
Taking Z—i ~ %, if kgT < eEs, one can neglect the diffusion term ‘ S '

dE
J = kuk <dx>
_ 14
E = \/E (x + xq)

And integrating

where X, is a constant




Derivation of Mott and Gurney law

s 5 12] p: mobility
V=] Edx = —(x + xg) dx : :
0 o <l ku n: charge carrier density
D: diffusion coefficient
2 2] 3/2 k: dielectric constant
=3 [l G+ 202 = 55"
Thus, for x, <<'s, neglecting x,
9 V2
J=gknz

The theory in fact cannot give an accurate description of the physical

situation near the injecting cathode where the field will be zero and the
current must be a pure diffusion current.
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