Time dependent P reversal

Xuanyuan Jiang
2019-07-19

Yoshihiro ISHIBASHI, J. Phys. Soc.
Japan, 1990, 59, 4148-4154

P reversal=Nucleation + Domain growth

Infinite FE film sandwiched by two electrodes with switching field applied.

Calculation of switched area $\mathrm{C}(\mathrm{t})$

- Since switched area may be overlapped, $\mathrm{C}(\mathrm{t})=1-\mathrm{q}(\mathrm{t}), \mathrm{q}(\mathrm{t})$ is unswitched area.
- $q(t)=\prod_{i=0}^{k}(1-J(i \Delta \tau) S(k \Delta \tau, i \Delta \tau) \Delta \tau), J(i \Delta \tau)$ means number of nucleis at $i \Delta \tau$ per area, $S(t, \tau)=\pi(v(t-\tau))^{2}$ is the switched area. For more dimentions, $S(t, \tau)=C_{d}(v(t-\tau))^{d}$.
- $\ln q(t)=-\int_{0}^{t} J(\tau) S(t, \tau) d \tau$,
when $\mathrm{J}(\mathrm{t})=\mathrm{R}$ (thermal activated nuclei),

$$
C(t)=1-\exp \left(-\left(\frac{t}{t_{I}}\right)^{d+1}\right),\left(\frac{1}{t_{I}}\right)^{d+1}=R \frac{C_{d} v^{d}}{d+1}
$$

when $\mathrm{J}(\mathrm{t})=\mathrm{N} \delta(t)$ (latent nuclei),

$$
C(t)=1-\exp \left(-\left(\frac{t}{t_{I I}}\right)^{d}\right),\left(\frac{1}{t_{I I}}\right)^{d}=C_{d} N v^{d}
$$

$\mathrm{P}(t)=2 P_{s} c(t)$

Calculation of p in domain wall

- One dimensional p^{4} system model for domain wall

$$
f=\frac{1}{4}\left(1-p^{2}\right)^{2}+\frac{k}{2}\left(\frac{d p}{d x}\right)^{2}, k>0
$$

k represents interaction with neighbors.
Euler-Lagarange equ. $\frac{d f}{d p}=\frac{d}{d x} \frac{\partial f}{\partial \frac{d p}{d x}}$

$$
k \frac{d^{2} p}{d x^{2}}+p-p^{3}=0
$$

Boundary condition, $p= \pm 1, \frac{d p}{d x}=0 @ x= \pm \infty$

$$
p=\tanh \frac{x}{\sqrt{2 k}}
$$

Fig. 3. A domain wall in the continuum. (a) $x_{0}>2 d$, (b) $x_{0}<2 d$.

Domain wall width $d=\sqrt{2 k}$

Calculation of v for domain wall move

- Equate the rate of the energy lost by viscosity and the electric energy supplied by external field. -pe is added to $\mathrm{f}(\mathrm{x})$. Total energy $F=\int f(x) d x$
- Time evolution

$$
\gamma \frac{d p}{d t}=-\frac{\delta F}{\delta p} ?
$$

- For a moving domain wall,

$$
p(x, t)=\tanh \frac{x-v t}{\sqrt{2 k}}
$$

$$
v=\frac{3 \sqrt{2 k}}{2} e=\frac{3 d}{2} e
$$

boundary plate (2D, stationary)

Switching time vs applied field

Fig. 7. The applied field (e) dependences of the switching time t_{s}, for two cases with different distribution of nuclei ($m_{+}=m_{-}=5 \mathrm{in}$ both cases). t is measured with the unit of $\Delta t=0.02$.

