"Exploiting Symmetry Mismatch to Control Magnetism in a Ferroelastic Heterostructure"

Corbyn Mellinger

Xu Group Meeting

May 31 2019

PHYSICAL REVIEW LETTERS 122, 187202 (2019)

LaCoO₃ : A Small Mystery

- Rhombohedral perovskite structure at RT; nonmagnetic in bulk
- Observed FM behavior in thin film with $T_c \sim 80 K$
- Traditionally attributed to oxygen vacancy ordering

R3c LCO structure, in pseudocubic axes. CoO_6 octahedral with La

LaCoO₃ : A Small Mystery

- Rhombohedral perovskite structure at RT; nonmagnetic in bulk
- Observed FM behavior in thin film with $T_c{\sim}80{\rm K}$
- Traditionally attributed to oxygen vacancy ordering

LaCoO₃ : A Small Mystery

- Rhombohedral perovskite structure at RT; nonmagnetic in bulk
- Observed FM behavior in thin film with $T_c \sim 80 K$
- Traditionally attributed to oxygen vacancy ordering

Co³⁺: S=1

LaCoO₃ : A Small Mystery

- Rhombohedral perovskite structure at RT; nonmagnetic in bulk
- Observed FM behavior in thin film with $T_c \sim 80 K$
- Traditionally attributed to oxygen vacancy ordering

Co³⁺: S=2

LaCoO₃ : A Small Mystery

- Rhombohedral perovskite structure at RT; nonmagnetic in bulk
- Observed FM behavior in thin film with $T_c \sim 80 K$
- Traditionally attributed to oxygen vacancy ordering

Co²⁺: S=3/2

LaCoO₃ XAS

- Don't see Co²⁺ in as-grown samples; fabrication for TEM causes damaging oxidation?
- Strain-distortion of CoO₆ octahedra lead to nonzero spin on Co
 - "Tetragonally distorted CoO₆ octahedra have nonzero spins, while the monoclinically distorted CoO₆ possess zero spin."

X-ray Depth Profiling

- X-ray densities at interface same as bulk; film interior 1.6% lower
 - Ferroelastic domains → lower density
- Suggests strain gradient affecting LCO; look at magnetic information

Polar Neutron Reflectometry (PNR)

- Neutron polarized parallel or antiparallel to field H
 - Nuclear and magnetic field interactions change intensity and polarization of reflected neutrons
- Glancing angle of incident neutrons control how deep neutrons probe; allow for magnetization determination as function of depth
- Reflectivities R⁺⁺, R⁻⁻, R⁺⁻, R⁻⁺ fit to model

JMMM 200 (1999), 741-754

- Scattering length density (SLD): determined by nuclear and magnetic density of material
- Magnetization lower at interfaces than in film bulk
- Nuclear SLD lower in film bulk
 - Agrees with x-ray SLD

Strain in LCO Thin-Film

 LCO/STO interface distorted differently than interior, causing magnetization difference

• Interface thickness = magnetic difference thickness

- Proposed mechanism:
 - d_{Co-O} = 1.93Å; Co-O-Co bond angle ~163° in bulk
 - Tensile strain from STO inc. angle to near 180°, increase d_{Co-O} which lowers Δ_{CF}

Testing Compression Effect

- Applied pressure dec. film volume, inc. CF splitting energy to make HSstate of Co³⁺ less favorable
 - Strain of STO enough to account for magnetization

