
Kinetics of crystal nucleation in lithium silicate glasses

Yifan Yuan

01/29/2019

Experimental: preparation of glasses and heat treatment

The nucleation rate was negligible at growth temperature.

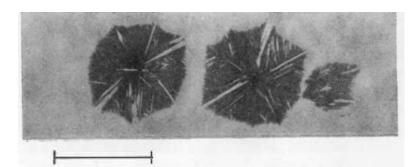


Figure 13.2 Continuous cooling transformation diagram for the crystallization of a lunar glass (35.5 wt% SiO₂, 14.3 wt% TiO₂, 3.7 wt% Al₂O₃, 23.5 wt% FeO, 11.6 wt% MgO, 11.1 wt% CaO, and 0.2 wt% Na₂O). Also superimposed on this plot are two cooling curves, labeled "1" and "2." (Reprinted

Results

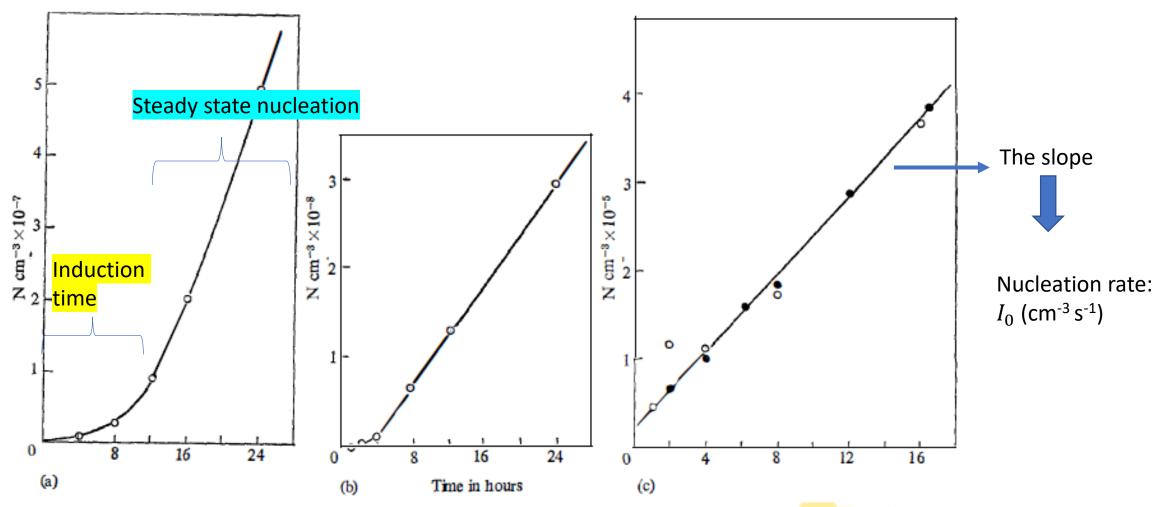


Figure 8. Increase in the number of crystal particles per unit volume with time in glass 1 after nucleation at (a) 440° C, (b) 454° C, and (c) 527° C

growth temperature 560°C
 growth temperature 620°C

Results

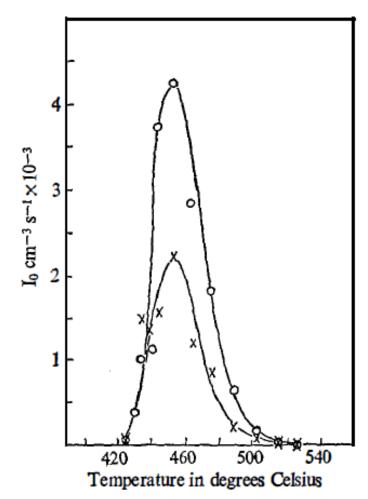


Figure 10. Steady state nucleation rate as a function of temperature

O glass 1 × glass 2

Table 3. Values of τ and I_0 at different nucleating temperatures

	Glass 1		Glass 2	
Temperature (°C)	τ (min)	$(cm^{-3} s^{-1})$	τ (min)	I_0 $(cm^{-3} s^{-1})$
425	3046	45 (approximately)	1532	43.3
430	2170	368		
435	1040	1 041	948	1 488
440	480	1147	378	1 366
445	288	3761	292	1 581
454	136.8	4253	177.6	2 2 4 9
465	36.5	2863	21.9	1 202
476	12.8 (approximately)	1 868	11	868
489	7 (approximately)	639		212
502	(approminately)	149		86.2
516		24.5		18.8
527	-	6.00		5.94

Nucleation kinetics. Comparison with theory of non-steady state homogeneous nucleation

1. Time dependence of nucleation density

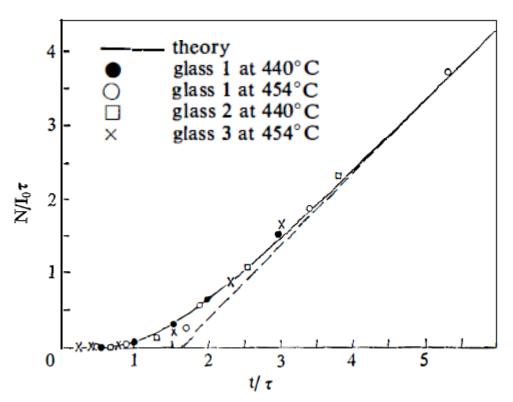


Figure 13. Comparison of experimental data with theory of nonsteady state nucleation

$$I = I_0[1+2\sum_{n=1}^{\infty} (-1)^n \exp(-n^2t/\tau)]$$
 (4)

where **n** is an integer

$$\frac{N(t)}{I_0\tau} = \frac{t}{\tau} - \frac{\pi^2}{6} - 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \exp\left(-n^2 t/\tau\right)$$

If $t > 5\tau$ this reduces to the simple equation $N(t) = I_0(t - \pi^2 \tau/6)$.

Nucleation kinetics. Comparison with theory of non-steady state homogeneous nucleation

2. Temperature dependence of induction time

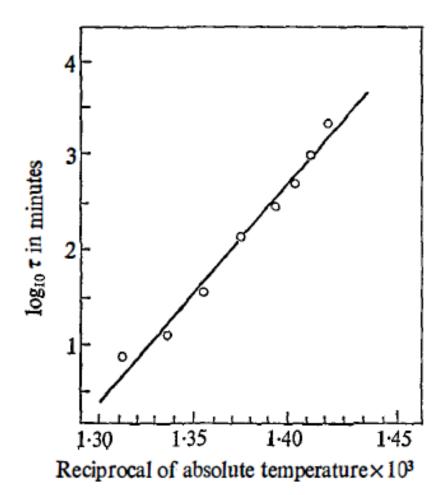


Figure 15. Relation between induction times and temperature for glass 1

$$\tau = \frac{16}{\pi^2} \cdot \frac{h\lambda^2 \sigma}{V^2 \Delta G_V^2} \exp\left(\Delta G_D/kT\right)$$

h is Planck's constant

λ is a quantity of the order of the atomic dimensions (jump distance),

k is Boltzmann's constant

 ΔGv is the difference in free energy between the liquid and crystal phases per unit volume,

V is the volume occupied per formula unit.

 ΔG_D should be identified with the activation energy involved in transport across the interface between liquid and crystal.

o is the interfacial free energy per unit area,

Conclusions

The time dependence of the number of nuclei per unit volume at constant temperature was in good agreement with the theory.

The theory also accounts for the temperature dependence of the experimental induction times.

References

James, P. F. "Kinetics of crystal nucleation in lithium silicate-glasses." *Physics and chemistry of glasses* 15.4 (1974): 95-105.

Vesselinov, Markov Ivan. *Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy*. World scientific, 2003, page 122.

Thanks for your attention!