Basics of quantum information and quantum computing

Xiaoshan Xu
2019/01/25

https://www.research.ibm.com/ibm-q/

Why quantum computer

- Simulate quantum phenomena
- Shor's factorization algorithm (encryption and decryption)
- Grover's algorithm for unstructured search
- Classical information
- Bit/binary

2 Bits = 4 States

3 Bits $=8$ States

- Quantum information
- Qubit (Bloch sphere) and superposition

Implementation of qubit

- Linearly polarized photon
$\mid 0>: E_{x} \hat{x}$
$\mid 1>: E_{y} \hat{y}$
$\mid \psi>: E_{x} \hat{x}+e^{i \phi} E_{y} \hat{y}$
Elliptical photon

$$
E_{y} / E_{x}=\tan (\theta)
$$

Implementation of qubit

- Macroscopic quantum state (superconducting state)
- Josephson junction (two superconductor
 separated by an insulator with phase change ϕ.

?

Superconducting island in dashed line

$$
E=E_{c}\left(N-N_{g}\right)-E_{j} \cos ()
$$

N : number of cooper pairs
$\mathrm{N}_{\mathrm{g}}, \mathrm{E}_{\mathrm{j}}$ constants.

Entanglement

- Superposition of many-body states

$$
\frac{1}{\sqrt{2}}(|01>+| 10>)
$$

When quit 1 measures $|0\rangle$, qubit 2 must measure |1>. This is entanglement.

