Basics of quantum information and quantum computing

Xiaoshan Xu 2019/01/25

https://www.research.ibm.com/ibm-q/

Why quantum computer

- Simulate quantum phenomena
- Shor's factorization algorithm (encryption and decryption)
- Grover's algorithm for unstructured search

- Classical information
- Bit/binary

l

0 0	0 1	10	1 1
3	Bits =	8 State	S
000	0 0 1	0 1 0	0 1 1

2 Bits = 4 States

100	101	1 1 0	1 1 1

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

- Quantum information
- Qubit (Bloch sphere) and superposition

Implementation of qubit

• Linearly polarized photon

 $|0>: E_x \hat{x} \\ |1>: E_y \hat{y}|$

$$\begin{split} |\psi > : E_x \hat{x} + e^{i\phi} E_y \hat{y} \\ \text{Elliptical photon} \\ E_y / E_x = \tan(\theta) \end{split}$$

Implementation of qubit

?

- Macroscopic quantum state (superconducting state)
- Josephson junction (two superconductor separated by an insulator with phase change $\phi.$

Superconducting island in dashed line $E = E_c(N - N_g) - E_j \cos()$

N: number of cooper pairs N_g , E_j constants.

Entanglement

• Superposition of many-body states $\frac{1}{\sqrt{2}}(|01>+|10>)$

When quit 1 measures |0>, qubit 2 must measure |1>. This is entanglement.

