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Four main methods to control magnetic states
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< Relying on the combination of field cooling and large magnetic fields or subsidiary
ferromagnets to alter the magnetic configuration is not so convenient.

< Coupling between magnetization and the electric field by multiferroic, magnetoelectric
materials or exchange bias helps to realize the manipulation of antiferromagnets and the
design of low power spintronics architectures such as information storage devices.

< In recent years, manipulation by electric current has become more popular as an innovative
and effective method.
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Electrical field-multiferroic materials
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B|FeO3 » Aroom-temperature single-phase magnetoelectric multiferroics with a ferroelectric Curie e
temperature (T.) of ~1,100 K and an antiferromagnetic Neel temperature (T,) of ~640 K.

v A single-phase multiferroic material is one that possesses two—or all three—of the
so-called ‘ferroic’ properties: ferroelectricity, ferromagnetism and ferroelasticity.

v" Moreover, the classification of a multiferroic has been broadened to include
antiferroic order.

A large ferroelectric polarization and a small magnetization are observed in

BiFeO:thin films with a large magnetoelectric coupling.
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Recent small angle neutron scattering (SANS) experiments showed that the spins
actually also cant away from the rotation plane by up to about one degree.

J. Phys.: Condens. Matter 26 (2014) 473201 (23pp)
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% The orientation of the antiferromagnetic sublattice magnetization therefore seems to be
coupled to the ferroelastic strain state of the system and should always be
perpendicular to the ferroelectric polarization.
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U The key to electrical control of antiferromagnetic domains in multiferroic BiFeO, films at room
temperature lies in the coupling between ferroelectricity and antiferromagnetism in BiFeO; thin films.

After poling

D _ST

O The switching, originating from the coupling of
antiferromagnetic and ferroelectric domains to
the underlying ferroelastic domain structure,
has been demonstrated experimentally by
piezoelectric force microscopy (PFM),
photoemission electron microscopy (PEEM)
and theoretically by first-principles calculation.

Regions 1 and 2 correspond to 109- ferroelectric switching,
3 and 4 correspond to 71- and 180- switching

Nat. Mater. 5 823-9(2006)
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BiFeO,

“ Recently, the magneto transport and electronic transport in BiFeO; were found
to occur across domain walls by external fields, clarifying the manipulation
mechanism of BiFeO4 antiferromagnetic moments and promoting the
development of multiferroic materials in spintronics.
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» Magnetoelectric coupling may exist whatever the nature of magnetic and electrical order parameters,
and can for example occur in paramagnetic ferroelectrics.

» Magnetoelectric coupling may arise directly between the two order parameters, or indirectly via strain.

» Magnetoelectric Cr,O; is also used to electrically control antiferromagnetic domains

a

» Sample structure: Cr,04
(0001)/Pd 0.5 nm/ (Co 0.6 nm Pd
1.0 nm)3

M/M,

O Global magnetization reversal and
reversible isothermal magnetoelectric

; switching can be realized at room
temperature.

O The isothermal switching of the exchange-

I bias field implies a field-induced

= switching of the antiferromagnetic

i single-domain state of Cr,O; into the
+E7 © ‘ | | | | | ‘ | ‘ opposite antiferromagnetic registration.
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Figure 3 | Isothermal electric switching of the exchange-bias field. a, Exchange-biased hysteresis loops of Cr203 (0001)/Pd 0.5 nm/
(Co 0.6 nm Pd 1.0 nm); at T =303 K after initial magnetoelectric annealing in E=0.1kV mm~" and puoH = 77.8 mT. Hysteresis loops are measured by
polar Kerr magnetometry in £ = 0, respectively. The red squares show the virgin curve with a positive exchange-bias field of poHgg =+6 mT.
Isothermal-field exposure in E=—2.6 kV mm~" and uoH = +154 mT gives rise to a loop with a negative exchange-bias field of uoHeg = =13 mT (green
triangles). b, The red squares show the same virgin reference loop. The blue circles show the hysteresis loop after isothermal-field exposure in
E =+2.6kV mm~' and poH = —154 mT, giving rise to the same negative exchange bias of soHgs = —13mT. €, oHeg versus number of repeated
isothermal switching through exposure to £ =+2.6 kV mm~' (blue circles) and £=—2kV mm™~' (red squares) at constant uoH = —154 mT, respectively. Nat. Mater. 9 579_85, 2010
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O Purely antiferromagnetic magnetoelectric random access memory using Cr.0:as the
antiferromagnetic element has also been designed, opening an appealing avenue for

magnetoelectric antiferromagnet research.
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Summary

Table 3. Summary of different electrical manipulation methods of antiferromagnets. T, T, T, and Ty represent ferroelectric Curie
temperature, Néel temperature, antiferromagnetic—ferromagnetic transition temperature, and blocking temperature, respectively.

System Mechanism Target Temperature References
BiFeOs films Electric field Antiferromagnetic domains T ~1100K; [131]
BiFeO; bulk and films  Electric field Spin flop Tc ~820°C [133]
T ~370°C
Ni/NiO Electric field Antiferromagnetic moments — [134]
Cr,05 (0001) Electric field Antiferromagnetic domains — [137]
Cr,04 Electric field Antiferromagnetic order parameter — [141]
[Co/Pt]/IrtMn Electric field Antiferromagnetic spins — [142]
[Co/Pt]/FeMn Electric field Antiferromagnetic moments Tg  >150K (5nm); [147]

<200 K (6 nm);

>200 K (15 nm)
Mn,Au Electric current  Antiferromagnetic moments Ty >1500K [151, 155, 156]
CuMnAs films Electric current  Antiferromagnetic domains Ty ~500K [154]

O Electrical control of antiferromagnets is prosperous for application in storage devices because the
manipulation process can be conducted at room temperature, with no need for a magnetic field, field
cooling, or ferromagnets.
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