Arrott and Arrott-Noakes Magnetism Plots

Corbyn Mellinger

27 September 2019
Xu Group Meeting

Classical PM-to-FM Ordering

- Magnetization follows the Langevin function

$$
\begin{aligned}
& L(x) \equiv \operatorname{ctanh}(x)-\frac{1}{(x)} ; x=\frac{\mu H}{k_{B} T} \\
& \approx \frac{1}{3} x-\frac{1}{45} x^{3} \text { for } x \ll 1
\end{aligned}
$$

- Weiss Mean Field Theory: magnetic moments experience magnetic field proportional to the mean field of the nearby atoms $\mathrm{H} \rightarrow H+\lambda m$
- $m=$

$$
N \mu L\left(\frac{\mu(H+\lambda m)}{k_{B} T}\right) ; \text { expand to } 1^{\text {st }} \text { order in } \mathrm{x}
$$

- $m \approx \frac{N \mu}{3} \frac{\mu(H+\lambda m)}{k_{B} T} \Rightarrow$

$$
\begin{aligned}
& \frac{C}{T}(H+\lambda m)=m, \frac{m}{H}=\chi= \\
& \frac{C}{T-\lambda C}=\frac{C}{T-T_{C}}
\end{aligned}
$$

- In other words, Weiss molecular field λ brings about susceptibility divergence at nonzero transition temperature

PM-to-FM Ordering

- For general temperature, have to solve $m=N \mu L\left(\frac{\mu(H+\lambda m)}{k_{B} T}\right)$
- Graphical method: plot line m, Langevin function and find intercept
- Spontaneous magnetization as function of temperature: shape matches what's found experimentally

How to Determine T_{c} ?

- $\chi=\frac{C}{T-T_{c}}$, so can't we just measure χ and look for where it diverges?
- Ok for getting decent idea of T_{c}, but χ never actually "diverges" in practice
- If need more precise T_{c}, need another method
- Revisit Weiss mean field expression: $m=N \mu L(x) \approx \frac{N \mu}{3} x-\frac{N \mu}{45} x^{3}$. Using $x=\frac{\mu}{k_{B} T}(H+$ $\lambda m)$:
- $m=\frac{A \mu}{k_{B} T} H+\frac{A \mu \lambda}{k_{B} T} m-\frac{B \mu^{3} \lambda^{3}}{\left(k_{B} T\right)^{3}} m^{3}$, or
- $\frac{A \mu H}{k_{B} T}=\frac{B \mu^{3} \lambda^{3}}{\left(k_{B} T\right)^{3}}-\left(\frac{T_{c}}{T}-1\right) m$, square and solve for m :
- $m^{2}=\frac{\left(k_{B} T\right)^{3}}{B \mu^{3} \lambda^{3}}\left(T_{c}-T\right)+\frac{A}{B} \frac{\left(k_{B} T\right)^{2}}{\mu^{2} \lambda^{3}} \frac{H}{m}$

Plot m^{2} vs H / m for temperatures around T_{c}, look for which temp intersects the origin

Arrott Plots

<2K difference

Fig. 3. Magnetization of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ (data of Smith ${ }^{1}$).

A. Arrott, Phys. Rev. 108, 1394 (1957)

Deviations from Mean Field

- Near T_{c}, fluctuations are great enough to invalidate Weiss' mean field approximation.
- Depend on dimensionality of system (e.g. 1d chain, 2d lattice, etc)
- 1d: T_{c} can only be zero (Ising solved exactly)
- 2d: $\mathrm{T}_{\mathrm{c}}>0$ can exist (Onsager; 1968 Nobel Prize)

- 3d: correction to MFT required
- Spin dimensionality important as well
- 1d spins: Ising model
- 2d: XY model
- 3d: Heisenberg model

Arrott-Noakes Plots

- More general equations of state:
- $M^{\frac{1}{\beta}}=\frac{T-T_{C}}{T_{1}}+\left(\frac{H}{M}\right)^{\frac{1}{\gamma}}$

FIG. 2. Raw data of Weiss and Forre approximate equation of state, Eq. (18).

- $\beta=0.5, \gamma=1$ in mean field
- Intersect origin @ $\mathrm{T}=\mathrm{T}_{\mathrm{c}}$; linearize plots with appropriate choices of exponents

FIG. 3. A replot of the data of Weiss and Forrer to conform to the variables of Eq. (1).

