Arrott and Arrott-Noakes Magnetism Plots

Corbyn Mellinger

27 September 2019

Xu Group Meeting

Classical PM-to-FM Ordering

• Magnetization follows the Langevin function

$$L(x) \equiv ctanh(x) - \frac{1}{(x)}; x = \frac{\mu H}{k_B T}$$

$$\approx \frac{1}{3}x - \frac{1}{45}x^3 \text{ for } x \ll 1.$$

• Weiss Mean Field Theory: magnetic moments experience magnetic field proportional to the *mean field* of the nearby atoms $H \rightarrow H + \lambda m$

• $m = N\mu L\left(\frac{\mu(H+\lambda m)}{k_BT}\right)$; expand to 1st order in x

•
$$m \approx \frac{N\mu}{3} \frac{\mu(H+\lambda m)}{k_B T} \Rightarrow$$

 $\frac{C}{T} (H + \lambda m) = m, \frac{m}{H} = \chi =$
 $\frac{C}{T-\lambda C} = \frac{C}{T-T_C}$

 In other words, Weiss molecular field λ brings about susceptibility divergence at nonzero transition temperature

PM-to-FM Ordering

- For general temperature, have to solve $m = N\mu L\left(\frac{\mu(H+\lambda m)}{k_BT}\right)$
- Graphical method: plot line m, Langevin function and find intercept
- Spontaneous magnetization as function of temperature: shape matches what's found experimentally

How to Determine T_c ?

- $\chi = \frac{c}{T T_c}$, so can't we just measure χ and look for where it diverges?
 - Ok for getting decent idea of T_{c_i} but χ never actually "diverges" in practice
 - If need more precise T_c, need another method

• Revisit Weiss mean field expression: $m = N\mu L(x) \approx \frac{N\mu}{3}x - \frac{N\mu}{45}x^3$. Using $x = \frac{\mu}{k_BT}(H + \lambda m)$:

•
$$m = \frac{A\mu}{k_B T}H + \frac{A\mu\lambda}{k_B T}m - \frac{B\mu^3\lambda^3}{(k_B T)^3}m^3$$
, or
• $\frac{A\mu H}{k_B T} = \frac{B\mu^3\lambda^3}{(k_B T)^3} - \left(\frac{T_c}{T} - 1\right)m$, square and solve for m:
• $m^2 = \frac{(k_B T)^3}{B\mu^3\lambda^3}(T_c - T) + \frac{A}{B}\frac{(k_B T)^2}{\mu^2\lambda^3}\frac{H}{m}$

Plot m² vs H/m for temperatures around T_c, look for which temp intersects the origin

A. Arrott, Phys. Rev. **108**, 1394 (1957)

Deviations from Mean Field

- Near T_c, fluctuations are great enough to invalidate Weiss' mean field approximation.
- Depend on *dimensionality of system* (e.g. 1d chain, 2d lattice, etc)
 - 1d: T_c can only be zero (Ising solved exactly)
 - 2d: T_c>0 can exist (Onsager; 1968 Nobel Prize)
 - 3d: correction to MFT required
- Spin dimensionality important as well
 - 1d spins: Ising model
 - 2d: XY model
 - 3d: Heisenberg model

Arrott-Noakes Plots

20

16

 σ gram

- More general equations of state:
- $M^{\frac{1}{\beta}} = \frac{T T_c}{T_1} + \left(\frac{H}{M}\right)^{\frac{1}{\gamma}}$
 - β =0.5, γ =1 in mean field
 - Intersect origin @ T=T_c; linearize plots with appropriate choices of exponents

A. Arrott and J. E. Noakes, Phys. Rev. Lett. **19**, 786 (1967).

FIG. 3. A replot of the data of Weiss and Forrer to conform to the variables of Eq. (1).