PID Controller Design

Yifan Yuan 10/14/2018

PID controller

Definition

A proportional-integral-derivative controller (PID controller or three term controller) is a control loop feedback mechanism widely used in industrial control systems and a variety of other applications requiring continuously modulated control.

> Origin:

1. PID or three-term control was first developed using theoretical analysis, by <u>Russian American</u> engineer <u>Nicolas Minorsky</u>

PID Controller Design

• Proportional-Integral-Derivative (PID) controller is a simple, yet versatile, feedback compensator structure

Example Problem

Governing equation $m\ddot{x} + b\dot{x} + kx = F$

Laplace transform of the governing equation

 $ms^{2}X(s) + bsX(s) + kX(s) = F(s)$

 $s^2 + 10s + 20$

Transfer function

m = 1 kg

b = 10 N s/m

k = 20 N/m

F = 1 N

Let

$$\frac{X(s)}{F(s)} = \frac{1}{ms^2 + bs + k}$$

a simple mass-spring-damper system.

The goal is to adjust Kp, Ki and Kd to obtain:

- Fast rise time
- Minimal overshoot
- Zero steady-state error

System diagram

Open-Loop Step Response

Proportional Control: Kp

Proportional-Integral Control: Kp, Ki

the integral controller reduces the rise time, increases the overshoot, and eliminated the steady-state error

Proportional-Integral-Derivative Control: Kp, Ki, Kd

Now, we have designed a closed-loop system with no overshoot, fast rise time, and no steady-state error.

How are the PID parameters (Kp, Ki, Kd) tuned

Manual tuning

1. Set Ki and Kd values to zero. Increase the Kp to approximately half of that value for a "quarter amplitude decay" type response.

How are the PID parameters (Kp, Ki, Kd) tuned

Manual tuning

2. increase Ki until any offset is corrected in sufficient time for the process. Make the steady-state error to be zero.

How are the PID parameters (Kp, Ki, Kd) tuned

Manual tuning

3. Finally, increase Kd, if required, until the loop is acceptably quick to reach its reference after a load disturbance.

In our cases

Substrate Temperature: 10±2 °C

Source Temperature: 20 (+1.8 ~ -0.2 °C)

Reference

- Nasser M. Abbasi. Determination of PID controller parameters from step response specifications. http://www.12000.org/my_notes/PID_ode/index.pdf
- Introduction: PID Controller Design. <u>http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction</u> <u>§ion=ControlPID</u>
- https://en.wikipedia.org/wiki/PID_controller

Thank you! Any questions?