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See also “The Quantum Theory of Magnetism” by Norberto Maklis, World Scientific, Sigapore (2000).
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Super-exchange interaction (simplified model)
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The energy difference can be represented by the
expression:
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How to calculate J?




Fundamental interactions: 1. Hopping (bonding)
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Fundamental interactions:

2. on site repulsion 3. Orbital energy

Two electrons on metal orbital (localized), Typically, metal orbital has lower energy (this
is why there is chemical bonding).

Define: D = €45 — €p

generating a coulomb repulsion energy U.



Possible states:

Three groups:
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All the interactions we considered are S, conserving, so when we
solve their energy by looking at the groups separately.



Hamiltonian for S,
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The energy of the lowest energy state:
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Compare the energy
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Conclusion

e Simple model to illustrate the super-exchange interaction
* The difference comes from the 4t order perturbation

* The energy reduction comes from the hopping of the electron
between the oxygen and metal states. More hopping, more energy
reduction, lower energy.

Note that in Anderson’s original paper “New Approach to the Theory of Superexchange Interactions” Physical Review 115, 2
2
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(1959), he started with the wavefunction of the 15t order correction. His results show | = L where b = - in this

presentation.



