Landau Theory for Ferroelectrics

Corbyn Mellinger

2017-12-01

Xu Group Meeting

Landau Models

- Landau-Devonshire: infinite (no boundaries) & uniform polarization
- Landau-Ginzburg: infinite & nonuniform polarization
- Landau Ginzburg w/ BCs: most realistic to thin films

Phenomenology	$\begin{array}{c} \mathbf{Ferroelectric}\\ \mathbf{(near} \ T_c) \end{array}$
Landau - Devonshire Theory (Uniform Polarization)	Poled Bulk System
Landau-Ginzburg Theory (Polarization with Spatial Gradient)	Bulk System
Landau-Ginzburg Theory with Boundary Conditions	Film

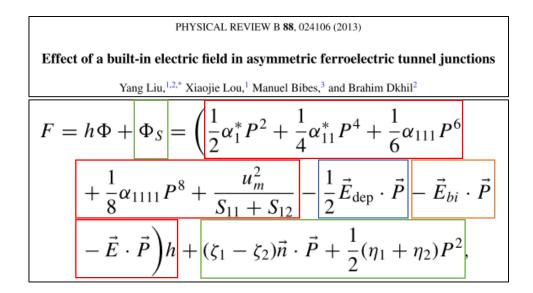
Built-in Fields in FTJs

- See in our STO/LSMO/BTO systems
 - Asymmetric hysteresis loops
- Theoretical work using free-energy
 - What are all these terms?

PHYSICAL REVIEW B 88, 024106 (2013)	
Effect of a built-in electric field in asymmetric ferroelectric tunnel junctions	
Yang Liu, ^{1,2,*} Xiaojie Lou, ¹ Manuel Bibes, ³ and Brahim Dkhil ²	
$F = h\Phi + \Phi_S = \left(\frac{1}{2}\alpha_1^*P^2 + \frac{1}{4}\alpha_{11}^*P^4 + \frac{1}{6}\alpha_{111}P^6\right)$	
$+\frac{1}{8}\alpha_{1111}P^{8}+\frac{u_{m}^{2}}{S_{11}+S_{12}}-\frac{1}{2}\vec{E}_{dep}\cdot\vec{P}-\vec{E}_{bi}\cdot\vec{P}$	
$(-\vec{E}\cdot\vec{P})h+(\zeta_1-\zeta_2)\vec{n}\cdot\vec{P}+rac{1}{2}(\eta_1+\eta_2)P^2,$	

Built-in Fields in FTJs

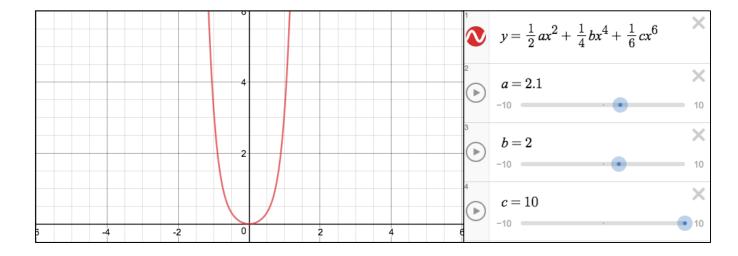
- (i) Bulk free energy
- (ii) Depolarization energy
- (iii) Build-in field due to electrodes
- (iv) Surface energy



Landau-Devonshire Treatment

•
$$\mathcal{F}_p = \frac{1}{2}aP^2 + \frac{1}{4}bP^4 + \frac{1}{6}cP^6 - EP$$

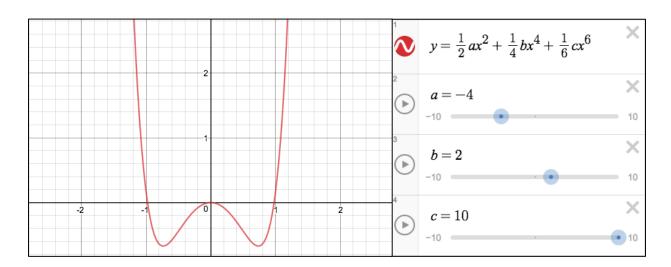
- Equilibrium: $E = aP + bP^3 + cP^5$
- $a = a_0(T T_0)$ based on Curie susceptibility
- Paraelectric: a>>0



Landau-Devonshire Treatment

•
$$\mathcal{F}_p = \frac{1}{2}aP^2 + \frac{1}{4}bP^4 + \frac{1}{6}cP^6 - EP$$

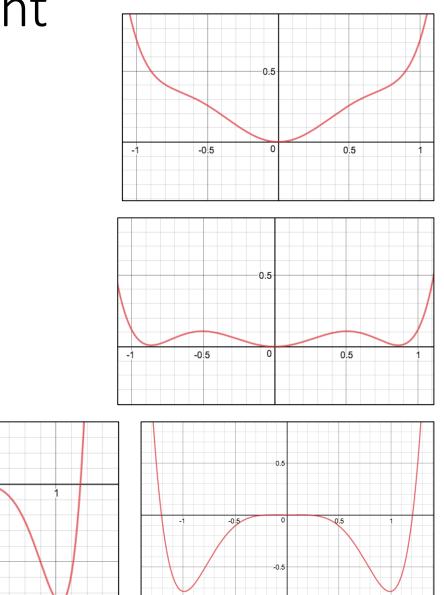
- Equilibrium: $E = aP + bP^3 + cP^5$
- $a = a_0(T T_0)$ based on Curie susceptibility
- Paraelectric: a>>0
- Ferroelectric: a<<0



Landau-Devonshire Treatment

•
$$\mathcal{F}_p = \frac{1}{2}aP^2 + \frac{1}{4}bP^4 + \frac{1}{6}cP^6 - EP$$

- Equilibrium: $E = aP + bP^3 + cP^5$
- $a = a_0(T T_0)$ based on Curie susceptibility
- Paraelectric: a>>0
- Ferroelectric: a<<0
- b affects type of transition



Coupling to Strain

•
$$\mathcal{F} = \mathcal{F}_P + \mathcal{F}_\eta$$

• $\mathcal{F}_\eta = \frac{1}{2}K\eta^2 + Q\eta P^2 + \dots - \eta\sigma$

- Matching to lattice: η =0 so $\mathcal{F}_{\eta} = 0$
- No external stress: $\sigma=0$ so $\eta = -\frac{QP^2}{K}$

•
$$\mathcal{F} = \frac{1}{2}aP^2 + \frac{1}{4}\left(b - \frac{2Q^2}{K}\right)P^4 + \frac{1}{6}cP^6 - EP$$

• Strain-coupling can lead to change in *type* of phase transition

Landau-Ginzburg Treatment

- Landau-Devonshire + small polarization fluctuations
 - Non-uniform P in bulk
- Integrate polarization over volume for free energy determination
- Correlation functions:

•
$$g(r) = \frac{k_B T}{\gamma} \frac{e^{-\frac{r}{\xi}}}{r^{d-2}} (T \neq T_0)$$

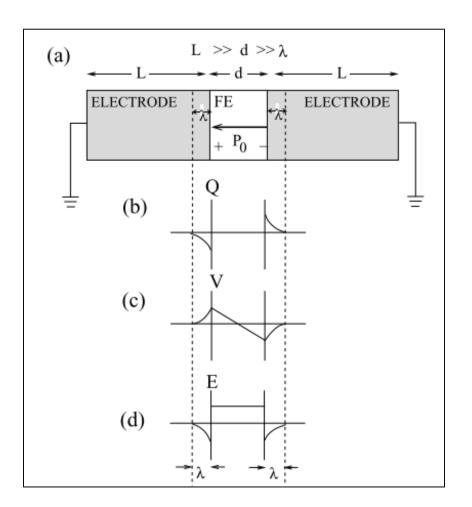
• $g(r) = \frac{k_B T}{\gamma} \frac{1}{r^{d-2}} (T = T_0)$

Depolarization Effects

- Finite charge screening length λ
 - Voltage drop across electrodes leads to field in FE layer

•
$$E_{dep} = E_0 - \frac{P}{\epsilon_0} = \frac{P}{\epsilon_0} \left(\frac{1}{1 + \frac{2\lambda}{d}} - 1 \right)$$

• $\sim \frac{2P\lambda}{\epsilon_0 d}$ for P uniform and $\lambda << d$



Treatment of Strained Films

• Considering a film grown on a substrate with lattice-mismatch

•
$$\frac{a-a_0}{a} \neq 0$$

- Cubic film on cubic substrate:
 - $\sigma_3 = \sigma_4 = \sigma_5 = 0$; no external stress on z-face of film
- *s*_{*ij*}: elastic compliance coefficients; can relate to "stiffness" of film

$$\mathcal{F} = \mathcal{F}_P - \frac{1}{2}s_{11}(\sigma_1^2 + \sigma_2^2) - Q_{12}\{(\sigma_1 + \sigma_2)P^2\} - s_{12}\sigma_1\sigma_2 - \frac{1}{2}s_{44}\sigma_6^2$$

Magic Happens...

- Very opaque to me
- Hooke's law-like terms
- Polarization-dependence
- Some cross-terms?
- Why?
- Who knows?

 $\tilde{\mathcal{F}} = \mathcal{F} + \eta_1 \sigma_1 + \eta_2 \sigma_2 + \eta_6 \sigma_6 \qquad (76)$

must be performed in order to study the equilibrium properties of this constrained film.

For pedagogical simplicity, we consider a uniaxial ferroelectric where P is the polarization in the z-direction. The free energy, with condition (\square), of a cubic ferroelectric is \square

$$\mathcal{F} = \mathcal{F}_P - \frac{1}{2}s_{11}(\sigma_1^2 + \sigma_2^2) - Q_{12}\{(\sigma_1 + \sigma_2)P^2\} - s_{12}\sigma_1\sigma_2 - \frac{1}{2}s_{44}\sigma_6^2$$
(77)

where Q_{ij} and s_{ij} are the electrostrictive constants and the elastic compliances at constant polarization respectively. Using $\frac{\partial \mathcal{F}}{\partial \sigma_i} = -\eta_i$, and solving for $\sigma_1 = \sigma_2 = \bar{\sigma}$ (in this special case $\sigma_6 = 0$), we find that

$$\tilde{\mathcal{F}} = \frac{\bar{\eta}^2}{s_{11} + s_{12}} + \frac{1}{2}\tilde{a}P^2 + \frac{1}{4}\tilde{b}P^4 + \frac{1}{6}cP^6$$
(78)

where

$$\tilde{i} = a - \frac{4\bar{\eta}Q_{12}}{s_{11} + s_{12}}$$
(79)

and

 $\tilde{b} = b + \frac{4Q_{12}^2}{s_{11} + s_{12}} \tag{80}$

Surface Energy Terms

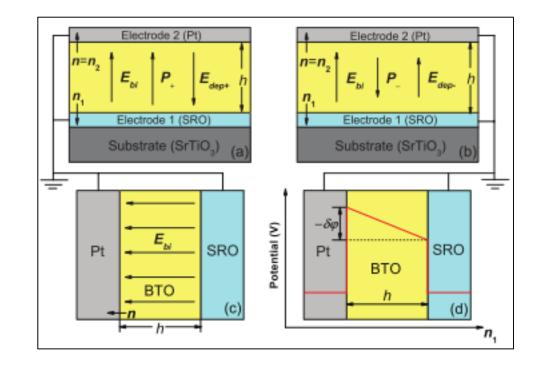
- Surface terminations break symmetry and thus introduce additional energies
- Perform expansion in orders of P
 - Linear term $\propto \vec{P}\cdot\hat{n}$ at both surfaces
 - Quadratic $\propto P^2$ at both surfaces

Built-in Field

 Potential difference (work function) exists at interface between FE and electrodes

•
$$E_{bi} = -\frac{\Delta \varphi}{h} \hat{n}$$

- Only exists in asymmetric FTJs
 - Symmetric: $\varphi_1 = \varphi_2; \Delta \varphi = 0$



Thank you