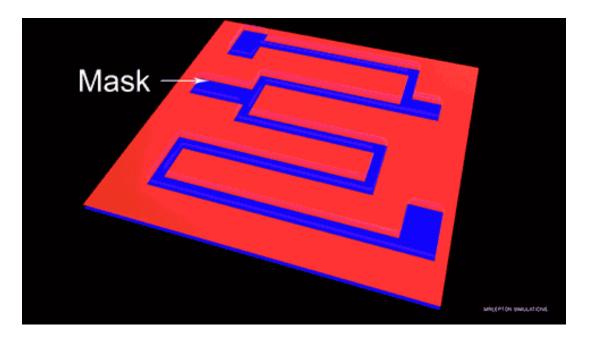
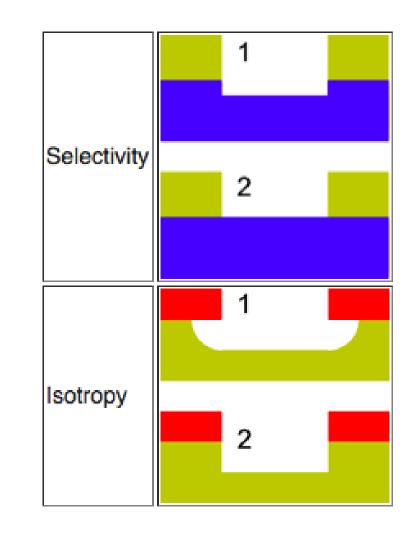
Etching Principles and Mechanisms


Corbyn Mellinger

2017-10-27

Xu Group Meeting


Etching Principles

- Mask provides outline of desired feature
- Etchant removes unmasked portions of sample
- Mask removed to reveal final feature

Selecting an Etchant

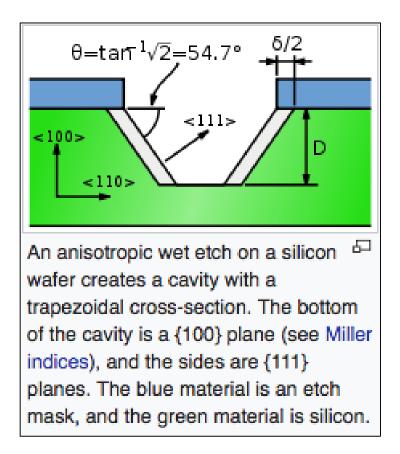
- Depends largely on what the material to be etched is (chemically reactive)
- Selectivity: difference in etching sensitivity between feature material and sample
- Bias (isotropy): difference in etching rate for sample in all directions

Wet Etching

- Bathe material in some solution
 - Have been doing for STO treatment
- Limited by which chemicals will react

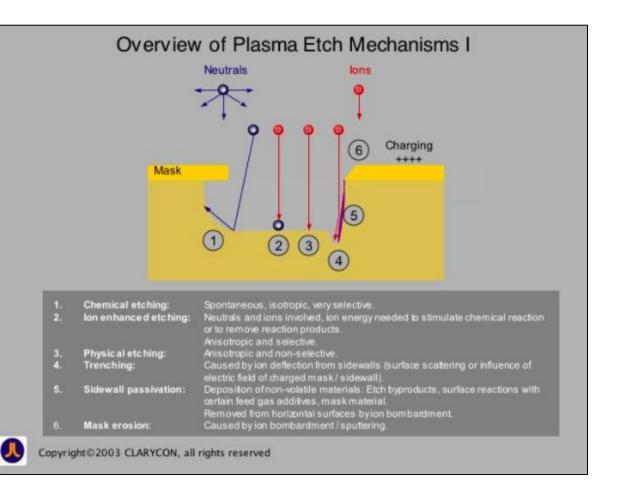
 $\begin{array}{l} \mathsf{Pt}_{(s)} + 4 \ \mathsf{NO}_3^-{}_{(aq)} + 8 \ \mathsf{H}^+{}_{(aq)} \rightarrow \mathsf{Pt}^{4+}{}_{(aq)} + 4 \ \mathsf{NO}_2{}_{(g)} + 4 \ \mathsf{H}_2\mathsf{O}_{(l)} \\ \\ \mathsf{3Pt}_{(s)} + 4 \ \mathsf{NO}_3^-{}_{(aq)} + 16 \ \mathsf{H}^+{}_{(aq)} \rightarrow \mathsf{3Pt}^{4+}{}_{(aq)} + 4 \ \mathsf{NO}_{(g)} + 8 \ \mathsf{H}_2\mathsf{O}_{(l)} \end{array}$

APPLIED PHYSICS LETTERS **93**, 061909 (2008) Atomic control and characterization of surface defect states of TiO₂ terminated SrTiO₃ single crystals M. Kareev,^{1,a)} S. Prosandeev,¹ J. Liu,¹ C. Gan,¹ A. Kareev,¹ J. W. Freeland,² Min Xiao,¹ and J. Chakhalian¹ ¹University of Arkansas, Fayetteville, Arkansas 72701, USA


²Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 3 April 2008; accepted 27 July 2008; published online 14 August 2008)

Etchants for common microfabrication materials	
Material to be etched	Wet etchants
Aluminium (Al)	80% phosphoric acid (H ₃ PO ₄) + 5% acetic acid + 5% nitric acid (HNO ₃) + 10% water (H ₂ O) at 35–45 $^{\circ}C^{[4]}$
Indium tin oxide [ITO] (In ₂ O ₃ :SnO ₂)	Hydrochloric acid (HCl) + nitric acid (HNO ₃) + water (H ₂ O) (1:0.1:1) at 40 °C ^[6]
Chromium (Cr)	 "Chrome etch": ceric ammonium nitrate ((NH₄)₂Ce(NO₃)₆) + nitric acid (HNO₃)^[7] Hydrochloric acid (HCl)^[7]
Gallium Arsenide (GaAs)	• Citric Acid diluted ($C_6H_8O_7: H_2O, 1:1$) + Hydrogen Peroxide (H_2O_2)+ Water (H_2O)
Gold (Au)	Aqua regia, lodine and Potassium lodide solution
Molybdenum (Mo)	
Organic residues and photoresist	Piranha etch: sulfuric acid (H_2SO_4) + hydrogen peroxide (H_2O_2)
Platinum (Pt)	Aqua regia
Silicon (Si)	 Nitric acid (HNO₃) + hydrofluoric acid (HF)^[4] Potassium hydroxide (KOH) Ethylenediamine pyrocatechol (EDP) Tetramethylammonium hydroxide (TMAH)
Silicon dioxide (SiO ₂)	 Hydrofluoric acid (HF)^[4] Buffered oxide etch [BOE]: ammonium fluoride (NH₄F) and hydrofluoric acid (HF)^[4]
Silicon nitride (Si ₃ N ₄)	 85% Phosphoric acid (H₃PO₄) at 180 °C^[4] (Requires SiO₂ etch mask)
Tantalum (Ta)	
Titanium (Ti)	Hydrofluoric acid (HF) ^[4]


Wet Etching

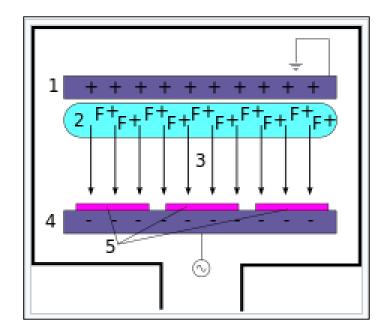
- Anisotropic etching: sensitivity depends on crystal face exposed
- Generally have less control over etching parameters

Dry (Plasma) Etching

- Bombard material with a gas, ion, etc.
- Better directional control (anisotropic etching)
- Less selectivity in general than wet etching

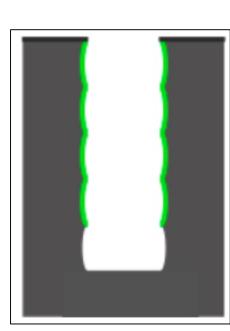
Ionization Mechanisms

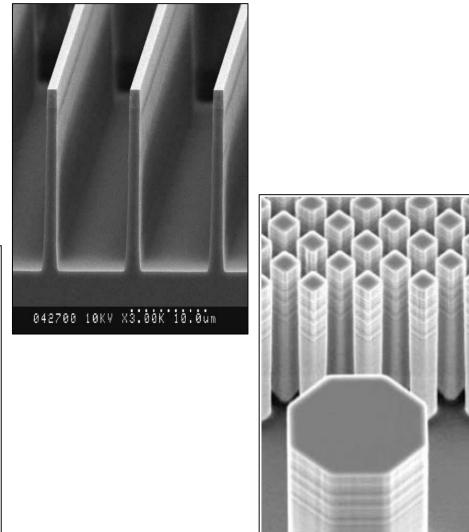
Inductively-Coupled


- Inductor generates field via time-varying current
- Inductor can be outside of chamber
 - Less susceptible to contamination from chamber
- More isotropic etches

Capacitively-Coupled

- Capacitor generates field via RF voltage signal between plates
- Most common mechanism
- Has to be in chamber
 - Subject to contamination from chamber


Reactive Ion Etching


- Generate plasma via induction or capacitance
- Wafer plate becomes negatively charged, creating static accelerating field of ions
- Highly anisotropic etching

Deep Reactive Ion Etching

- Bosch Process
 - Etch
 - Lay passivation layer
 - Repeat
- Highly defined structures possible
- Potential for non-uniform walls

10 µm

Available Facilities

Ion Beam Etching & Milling

Reactive Ion Etching

Deep RIE

