

X-ray intensity from Thomson scattering

Xuanyuan Jiang 08-24-2017

Thomson scattering

- Elastic.
- Photon scattered by free charged particles.
- In the low-energy limit, the <u>electric</u> field of the incident wave (photon) accelerates the charged particle, causing it, in turn, to emit <u>radiation</u> at the same frequency as the incident wave, and thus the wave is scattered.

How to calculate scattering ratio (transition probability)?

- Vector potential
 - $A(x,t) = \sum_k \sum_r \left(\frac{\hbar c^2}{2Vw_k}\right)^{\frac{1}{2}} \varepsilon_r(k) [a_r(k,t)e^{ikx} + a_r^*(k,t)e^{-ikx}]$
 - For incident photon with momentum h, and polarization $\varepsilon_{\alpha}(k)$, the matrix for transition is

$$\left\langle k', \beta \left| \frac{e^2}{2mc} A^2(0, t) \right| k, \alpha \right\rangle = \frac{e^2 \mathfrak{h}}{2mV(\omega\omega')^{1/2}} \varepsilon_{\alpha}(k) \cdot \varepsilon_{\beta}(k') e^{i(\omega' - \omega)t}$$
 So

Transition rate in solid angle $d\Omega$:

$$\omega_{\alpha \to \beta}(k')d\Omega = \frac{2\pi}{\hbar} \int \frac{Vk'^2 dk' d\Omega}{(2\pi)^3} \delta(\hbar\omega' - \omega) \left(\frac{e^2\hbar}{2mV(\omega\omega')^{\frac{1}{2}}}\right)^2 [\varepsilon_{\alpha}(k) \cdot \varepsilon_{\beta}(k')]^2$$
$$= \frac{c}{V} r_0^2 [\varepsilon_{\alpha}(k) \cdot \varepsilon_{\beta}(k')]^2 d\Omega = \frac{c}{V} r_0^2 \cos^2\chi d\Omega$$

Things to affect Xray reflection intensity

• 1. Multiplicity, the higher multiplicity, the stronger intensity

hkl	hhl	hh0	0kk	hhh	hk0	h0l	0kl	h00	0k0	001	
48 ^{<i>a</i>}	24	12	(12)	8	24 ^a	(24 ^a)	(24 ^a)	6	(6)	(6)	
16 ^a	8	4	(8)	(8)	8 ^a	8	(8)	4	(4)	2	
24ª	12^{a}	6	(12)	(12)	12^{a}	(12^{a})	12 ^a	6	(6)	2	
8	(8)	(8)	(8)	(8)	4	(4)	(4)	2	(2)	(2)	
4	(4)	(4)	(4)	(4)	(4)	(2)	(4)	2	(2)	(2)	
2	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	
	hkl 48 ^a 16 ^a 24 ^a 8 4 2	$\begin{array}{c ccc} hkl & hhl \\ \hline 48^a & 24 \\ 16^a & 8 \\ 24^a & 12^a \\ 8 & (8) \\ 4 & (4) \\ 2 & (2) \\ \end{array}$	hklhhlhh0 48^a 2412 16^a 84 24^a 12^a 68(8)(8)4(4)(4)2(2)(2)	hklhhlhh00kk 48^a 2412(12) 16^a 84(8) 24^a 12^a 6(12)8(8)(8)(8)4(4)(4)(4)2(2)(2)(2)	hklhhlhh00kkhhh 48^a 2412(12)8 16^a 84(8)(8) 24^a 12^a 6(12)(12)8(8)(8)(8)(8)4(4)(4)(4)(4)2(2)(2)(2)(2)	hklhhlhh00kkhhhhk0 48^a 2412(12)8 24^a 16^a 84(8)(8) 8^a 24^a 12^a 6(12)(12) 12^a 8(8)(8)(8)(8)44(4)(4)(4)(4)(4)2(2)(2)(2)(2)(2)	hklhh00kkhhhhk0h0l 48^a 2412(12)8 24^a (24^a) 16^a 84(8)(8) 8^a 8 24^a 12^a6(12)(12) 12^a (12^a) 8(8)(8)(8)(8)4(4)4(4)(4)(4)(4)(2)2(2)(2)(2)(2)(2)(2)	hklhh00kkhhhhk0h0l0kl 48^a 2412(12)8 24^a (24^a) (24^a) 16^a 84(8)(8) 8^a 8(8) 24^a 12^a6(12)(12) 12^a (12^a) 12^a 8(8)(8)(8)(4)(4)(4)(4)4(4)(4)(4)(4)(2)(4)2(2)(2)(2)(2)(2)(2)(2)	hklhhlhh00kkhhhhk0h0l0klh00 48^a 2412(12)8 24^a (24^a) (24^a) 6 16^a 84(8)(8) 8^a 8(8)4 24^a 12^a6(12)(12) 12^a (12^a) 12^a 68(8)(8)(8)4(4)(4)24(4)(4)(4)(4)(2)(4)22(2)(2)(2)(2)(2)(2)(2)	hklhhlhh00kkhhhhk0h0l0klh000k0 48^a 2412(12)8 24^a (24^a) (24^a) 6(6) 16^a 84(8)(8) 8^a 8(8)4(4) 24^a 12^a6(12)(12) 12^a (12^a) 12^a 6(6)8(8)(8)(8)(8)4(4)(4)2(2)4(4)(4)(4)(4)(2)(4)2(2)2(2)(2)(2)(2)(2)(2)(2)(2)(2)	

Table 3.3. Plane Multiplicity Factors, M_{hkl}

"When all permutations of indices do not produce equivalent planes, M must be reduced by half.

- 2. Lorentz correction: I/(sin²θcosθ) due to intersection between reciprocal lattice and diffractometer circle.
- 3. Absorption.
- 4. monochromater polarization.

