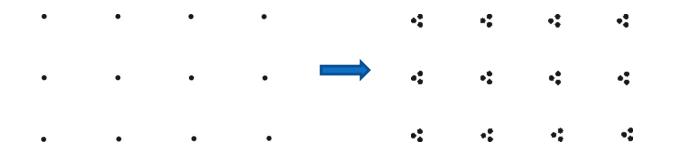
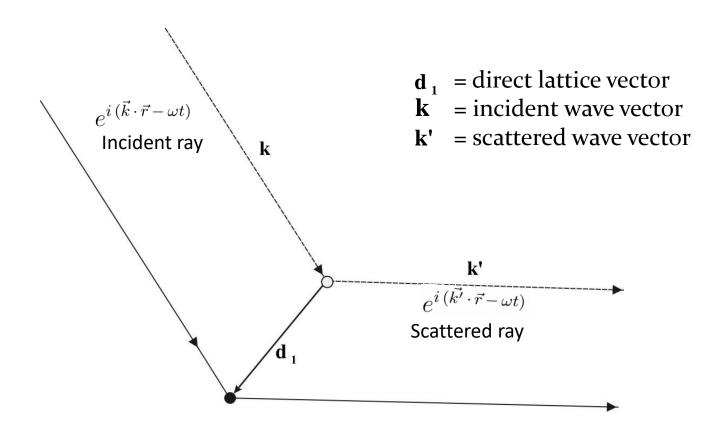
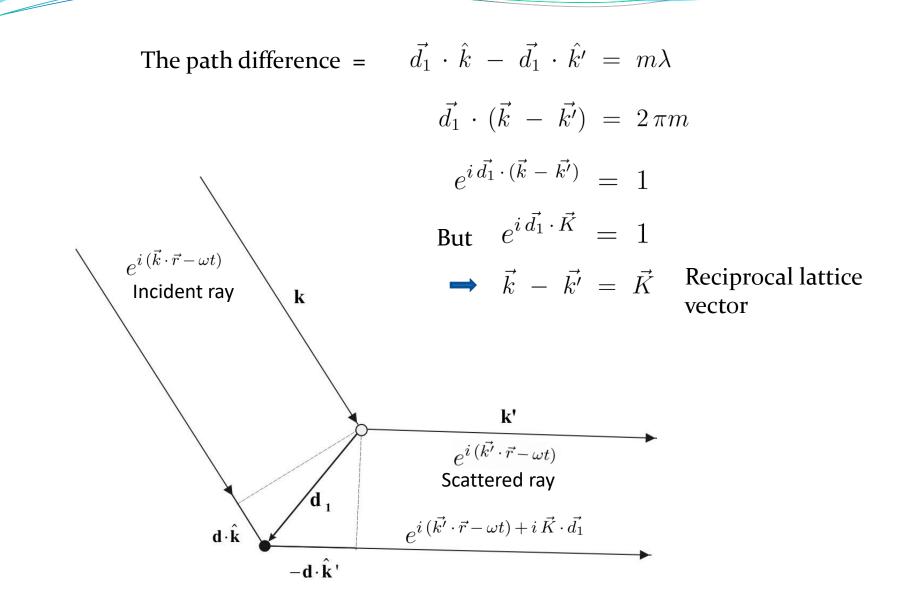
X – Ray Diffraction


Kishan Kumar Sinha

Department of Physics & Astronomy University of Nebraska-Lincoln


Outline


- 1. Mono-atomic Basis
- 2. Poly-atomic basis *Geometrical Structure Factor*
- 3. Charge distribution Atomic Form Factor
- 4. Conclusions

First we will consider a cubic crystal lattice with mono-atomic basis and then, we will consider the case where basis consists of more than two atoms/ions.

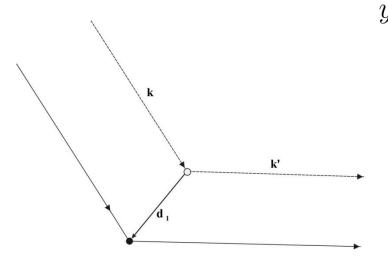
Mono-atomic basis

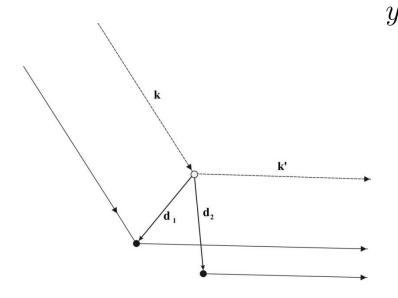
Thus,
$$e^{i\,(\vec{k'}\cdot\vec{r}-\omega t)+i\,\vec{K}\cdot\vec{d_j}} = e^{i\,(\vec{k'}\cdot\vec{r}-\omega t)}$$

 $e^{i\,\vec{K}\cdot\vec{d_j}} = 1$

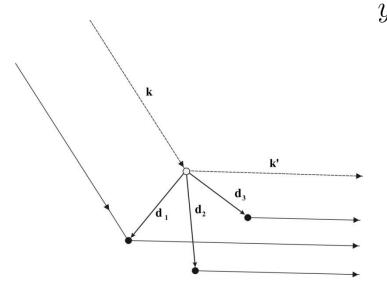
This is the condition for constructive interference along k' direction.

What happens if the basis has more than one atom / ion ?

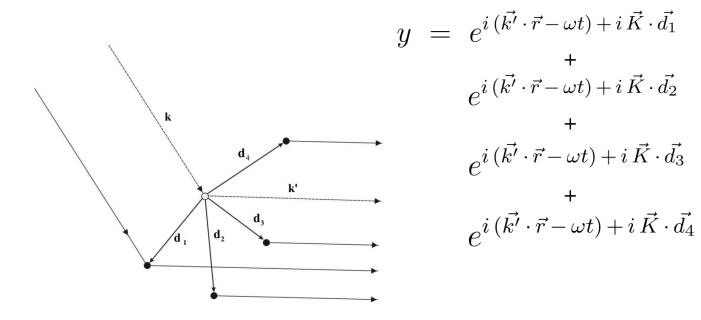

The interference will depend on how the X – rays are scattered by the basis atoms / ions.


The atoms in the basis may be placed in such a way that they result in destructive interference for certain \vec{K} directions.

•:	•:	•:	•:
•:	•:	•:	•:
•:	•:	•:	•:


Poly-atomic basis

$$y = e^{i \left(\vec{k'} \cdot \vec{r} - \omega t\right) + i \vec{K} \cdot \vec{d_1}}$$



$$y = e^{i (\vec{k'} \cdot \vec{r} - \omega t) + i \vec{K} \cdot \vec{d_1}}$$

+
$$e^{i (\vec{k'} \cdot \vec{r} - \omega t) + i \vec{K} \cdot \vec{d_2}}$$

$$y = e^{i (\vec{k'} \cdot \vec{r} - \omega t) + i \vec{K} \cdot \vec{d_1}} + e^{i (\vec{k'} \cdot \vec{r} - \omega t) + i \vec{K} \cdot \vec{d_2}} + e^{i (\vec{k'} \cdot \vec{r} - \omega t) + i \vec{K} \cdot \vec{d_3}}$$

This can be written in a more compact form as :

$$y = e^{i(\vec{k'} \cdot \vec{r} - \omega t)} \left(\sum_{j=1}^{4} e^{i\vec{K} \cdot \vec{d_j}} \right)$$

Thus, if the basis consists of *n* atoms / ions, the scattered X – rays will be of the form :

$$y = e^{i \left(\vec{k'} \cdot \vec{r} - \omega t\right)} \left(\sum_{j=1}^{n} e^{i \vec{K} \cdot \vec{d_j}} \right)$$

$$= e^{i \left(\vec{k'} \cdot \vec{r} - \omega t\right)} S\left(\vec{K}\right)$$

The function $S(\vec{K})$ contains the information about how the atoms /ions are placed in the basis and is known as the *Geometrical Structure Factor*.

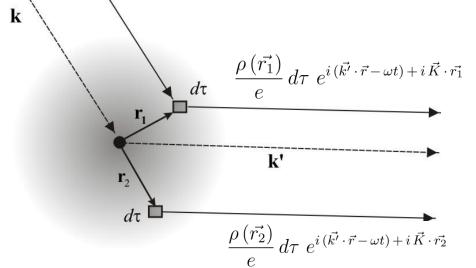
If $S(\vec{K})$ vanishes for some value of \vec{K} then the peak corresponding to \vec{K} will be absent from the diffraction pattern. Such absences are known as *systematic absences*.

Atomic form factor

In the above treatment, it was assumed that ions scatter x – rays equally in all directions.

However, the amplitude of the scattered rays will depend on the charge distribution of charge in each ion and will also have angular dependence via \vec{K}

Thus, the proper form of the resultant scattered rays must be :


$$y = e^{i(\vec{k'} \cdot \vec{r} - \omega t)} \left(\sum_{j=1}^{n} f_j e^{i\vec{K} \cdot \vec{d_j}} \right)$$

where $f_j = f_j(\vec{K})$

$$y = \frac{\rho\left(\vec{r_{1}}\right)}{e} d\tau \ e^{i\left(\vec{k'}\cdot\vec{r}-\omega t\right)+i\vec{K}\cdot\vec{r_{1}}} + \frac{\rho\left(\vec{r_{2}}\right)}{e} d\tau \ e^{i\left(\vec{k'}\cdot\vec{r}-\omega t\right)+i\vec{K}\cdot\vec{r_{2}}}$$

Since the charge distribution is continuous

$$y = e^{i \left(\vec{k'} \cdot \vec{r} - \omega t\right)} \int \frac{\rho\left(\vec{r}\right)}{e} d\tau \ e^{i \vec{K} \cdot \vec{r}}$$

The factor
$$\int \frac{\rho(\vec{r})}{e} d\tau e^{i \vec{K} \cdot \vec{r}}$$

is known as the *Atomic Form Factor* and contains information about the electronic charge distribution in an atom/ion.

Conclusions

Thus the resultant scattered X – rays are given by

$$y = e^{i(\vec{k'} \cdot \vec{r} - \omega t)} \left(\sum_{j=1}^{n} f_j e^{i\vec{K} \cdot \vec{d_j}} \right)$$

- 1. If in a crystal, the basis consists of only one ion, a peak will be observed corresponding to every possible reciprocal lattice vector.
- 2. More than one ion in a basis results in absence of certain peaks which would have been observed in the above case. This is given by *Geometrical Structure Factor* contains information about location of ions in the basis.
- 3. Amplitude of the scattered waves depend on the electronic charge distribution within the ions. This is given by the *Atomic Form Factor*.

Thank You