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Diffraction of crystal planes: real space

𝜃

𝑑
𝜃

𝑑 sin 𝜃

The difference between the two beam 
path is:

2𝑑 sin 𝜃

Bragg’s law: The diffraction has 
maximum when

2𝑑 sin 𝜃 = 𝑛𝜆



Diffraction of crystal planes: wave vectors

Rewrite Bragg’s law:

2𝑑 sin 𝜃 = 𝑛𝜆

2𝑑
𝑘d − 𝑘i

2 𝑘𝑖

= 𝑛𝜆

𝑘d − 𝑘i = 2 𝑘𝑖 sin(𝜃)

sin 𝜃 =
𝑘d − 𝑘i

2 𝑘𝑖

𝜃

𝑑
𝜃

𝑑 sin 𝜃

𝑘i 𝑘d

𝜃

𝑘d − 𝑘i = 𝑛
2𝜋

𝑑

𝑘i, 𝑘d: wave vectors of the incident 
and diffracted beams. 

𝑘i = 𝑘d =
2𝜋

𝜆

𝑘𝑖 𝜆 = 2𝜋



What’s 
2𝜋

𝑑
? 

𝑘d − 𝑘i = 𝑛
2𝜋

𝑑

Ԧ𝑎∗ = 2𝜋
𝑏 × Ԧ𝑐

Ԧ𝑎 × 𝑏 ∙ Ԧ𝑐
=

2𝜋

𝑎
ො𝑥

𝑏∗ = 2𝜋
Ԧ𝑐 × Ԧ𝑎

Ԧ𝑎 × 𝑏 ∙ Ԧ𝑐
=

2𝜋

𝑏
ො𝑦

Ԧ𝑐∗ = 2𝜋
Ԧ𝑎 × 𝑏

Ԧ𝑎 × 𝑏 ∙ Ԧ𝑐
=

2𝜋

𝑐
Ƹ𝑧

Real space

Ԧ𝑎( ො𝑥)

𝑏( ො𝑦)

Ԧ𝑐( Ƹ𝑧)

Ԧ𝑎∗( ො𝑥)
𝑏∗( ො𝑦)

Ԧ𝑐∗( Ƹ𝑧)

Reciprocal space



𝑘d − 𝑘i = 𝑛
2𝜋

𝑑

𝑏∗ = 2𝜋
Ԧ𝑐 × Ԧ𝑎

Ԧ𝑎 × 𝑏 ∙ Ԧ𝑐
=

2𝜋

𝑏
ො𝑦

Ԧ𝑎∗ = 2𝜋
𝑏 × Ԧ𝑐

Ԧ𝑎 × 𝑏 ∙ Ԧ𝑐
=

2𝜋

𝑎
ො𝑥

Example: the (110) plane

𝑑(110) =
𝑎𝑏

𝑎2 + 𝑏2

2𝜋

𝑑(110)
= 2𝜋

𝑎2 + 𝑏2

𝑎𝑏

The reciprocal vector (110)

| Ԧ𝐺(110)| = Ԧ𝑎∗ + 𝑏∗

=
2𝜋

𝑎
ො𝑥 +

2𝜋

𝑏
ො𝑦

= 2𝜋
𝑎2 + 𝑏2

𝑎𝑏

𝑎

𝑏

2𝜋

𝑑(110)
= | Ԧ𝐺(110)|

𝑘d − 𝑘i = Ԧ𝐺

Ԧ𝐺 = ℎ Ԧ𝑎∗ + 𝑘𝑏∗ + 𝑙 Ԧ𝑐∗

ℎ, 𝑘, 𝑙 are integers (Miller indices).



𝜃

𝑑
𝜃

𝑑 sin 𝜃

𝑘i 𝑘d

𝜃

𝑘d − 𝑘i = Ԧ𝐺

Ԧ𝐺 = ℎ Ԧ𝑎∗ + 𝑘𝑏∗ + 𝑙 Ԧ𝑐∗

ℎ, 𝑘, 𝑙 are integers (Miller indices).

𝑘d − 𝑘i

𝑘d − 𝑘i is along the normal of 
crystal plane. So,

𝑘d − 𝑘i = Ԧ𝐺
2𝑑 sin(𝜃) = 𝑛𝜆



Crystal diffraction in reciprocal space 

2𝑑 sin 𝜃 = 𝑛𝜆

𝑘d − 𝑘i = Ԧ𝐺

In reciprocal space,

1) Draw a circle, using the origin of 𝑘𝑖 as the center and 

𝑘𝑖 as the radius.

2) Draw 𝑘𝑖 on the circle

3) Move the circle so that the tip of 𝑘𝑖 is at the origin 
the reciprocal space.

4) The reciprocal lattice points that fall on the perimeter 
of the circle correspond to diffraction conditions.

Ԧ𝑎∗

𝑘i

𝑘d

𝑘d − 𝑘i = G

𝑏∗

A cross section of the 

Ewald sphere 

in 3D reciprocal space.



Example, (00L) diffraction

Ԧ𝑎∗

𝑘d

𝑘d − 𝑘i = (00𝑙)

Ԧ𝑐∗ (001)

(002)



Contribution from individual atoms to diffraction

𝑅 = 𝑢 Ԧ𝑎 + 𝑣𝑏 + 𝑤 Ԧ𝑐
𝑢, 𝑣, 𝑤 are integers

Phase change:

2𝜋
𝑅 sin 2𝜃

𝜆
=

2𝜋

𝜆
𝑅 2sin 𝜃 cos 𝜃

= 𝑘i 𝑅 2sin 𝜃 cos 𝜃

= 𝑘d − 𝑘i 𝑅 cos 𝜃

= 𝑘d − 𝑘i ∙ 𝑅

(0,0)

𝑅

𝑘i

𝑘d

𝑅 sin(2𝜃)

2𝜃

𝑘d − 𝑘i

𝜃

𝑘d − 𝑘i = 2 𝑘i sin(𝜃)

Every atom contributes an amplitude 
proportional to:

exp −𝑖 𝑘d − 𝑘i ∙ 𝑅

𝑘d − 𝑘i = 2 𝑘i sin(𝜃)



Crystal diffraction and Fourier transform

Diffraction intensity:

𝐼(𝑘d − 𝑘i) = 

𝑅

exp −𝑖 𝑘d − 𝑘i ∙ 𝑅

2

This is actually a Fourier transform of the lattice from real 
space into the reciprocal space.

Every atom contributes an amplitude 
proportional to:

exp −𝑖 𝑘d − 𝑘i ∙ 𝑅

𝑅 = 𝑢 Ԧ𝑎 + 𝑣𝑏 + 𝑤 Ԧ𝑐
are the position of atoms.



Rewrite: 𝐼(𝑘d − 𝑘i) = σ𝑖 exp −𝑖 𝑘d − 𝑘i ∙ 𝑅

𝐼 𝑘 = σ
𝑅

exp −𝑖𝑘 ∙ 𝑅
2

= σ𝑢,𝑣,𝑤 exp −𝑖 𝑘1 ∙ 𝑢𝑎 + 𝑘2 ∙ 𝑣𝑏 + 𝑘3 ∙ 𝑤𝑐
2

= σ𝑢 exp −𝑖 𝑘1 ∙ 𝑢𝑎 σ𝑣 exp −𝑖 𝑘2 ∙ 𝑣𝑏 σ𝑤 exp −𝑖 𝑘3 ∙ 𝑤𝑐 2

𝑘 ≡ 𝑘d − 𝑘i

≡ 𝑘1 Ԧ𝑎∗ + 𝑘2𝑏∗ + 𝑘3 Ԧ𝑐∗

𝑅 = 𝑢 Ԧ𝑎 + 𝑣𝑏 + 𝑤 Ԧ𝑐
𝑢, 𝑣, 𝑤 are integers

Let’s look at one of the sum:



𝑢

exp −𝑖(𝑘1 ∙ 𝑢𝑎)

= 𝑁 if 𝑘1 ∙ 𝑢𝑎 = n2𝜋
= 0 otherwise

So, after the transform:
𝑘1 = ℎ𝑎∗

𝑘2 = 𝑘𝑏∗

𝑘3 = 𝑙𝑐∗

This is the reciprocal lattice



Fourier transform of lattice of different dimensions

𝐼 𝑘 = 

𝑢

exp −𝑖 𝑘1 ∙ 𝑢𝑎 

𝑣

exp −𝑖 𝑘2 ∙ 𝑣𝑏 

𝑤

exp −𝑖 𝑘3 ∙ 𝑤𝑐

2

After the transform:
𝑘1 = ℎ𝑎∗

𝑘2 = 𝑘𝑏∗

𝑘3 𝑖𝑠 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

If the lattice is two dimensional (e.g. in the a-b plane):

𝑅 = 𝑢 Ԧ𝑎 + 𝑣𝑏
𝑢, 𝑣, are integers to sum over
𝑤 = 0

If the lattice is one dimensional (e.g. along the a axis):
𝑅 = 𝑢 Ԧ𝑎

𝑢, are integers to sum over
𝑣, 𝑤 = 0 After the transform:

𝑘1 = ℎ𝑎∗

𝑘2, 𝑘3 𝑎𝑟𝑒 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦



Real space Reciprocal space

Chain

2 D

3 D

Reciprocal points

Reciprocal planes

Reciprocal rods



Real crystal, finite size

Flat surface

patches

Thin rods

Thick rods

Let’s look at the sum again:



𝑢=1..𝑁

exp −𝑖 𝑘𝑥 ∙ 𝑢𝑎

2

=
sin2 𝑁𝑘𝑥𝑎

sin2(𝑘𝑥𝑎)

For intensity: Δ𝑘 ∝
1

𝑁2

N=5

N=10

N=20



Reflection high energy diffraction (RHEED) geometry

Crystal sample

Penetration depth for 30 keV
electron is 𝐿~10 − 100 nm.

𝜃

𝐿~10 − 100 nm

𝑑

𝑑 ≈ 𝐿 tan 𝜃 = 1.7 nm
Assuming: 𝐿 = 100 𝑛𝑚, 𝜃 = 1 𝑑𝑒𝑔𝑟𝑒𝑒

RHEED probes the surface (2 D lattice).



Ԧ𝑎∗

𝑘i

𝑘d

𝑘d − 𝑘i = G

𝑏∗

𝑘i

Cross section of Ewald sphere in 3D reciprocal space.

For 3 D real space, the reciprocal space consists of 

reciprocal points.

Only when the reciprocal points fall on the Ewald 

sphere, diffraction occurs.

Reciprocal points

Ewald sphere and reciprocal points



sample

Top and side view of the Ewald sphere in RHEED

For 2D real space, every reciprocal rods can intersect with the Ewald sphere, causing 

diffraction.

𝑏∗
𝑘i

𝑘d

Ԧ𝑎∗

𝑘i

𝑘d

𝑏∗

Top view Side view

Ewald sphere and reciprocal rods

𝑘i

Reciprocal rods







𝑘i

Top view 1st row

2nd row 1st row1st row

2nd row

(20)

𝑏∗Ԧ𝑎∗

(10)

(-10)

(-20)

(1-1)

(00)

(-1-1)

Diffraction pattern and reciprocal space  

(-10)

(10)

(00)



Why diffraction streaks?

𝑏∗
𝑘i

𝑘d

Side view

Patches on the surface 
broadens the reciprocal rods. 

Broadening amplified in 
the vertical direction 
due to the geometry.

streaks



What about islands?

• The horizontal dimension is not too 
large (<100 nm).

• The vertical dimension is not too small 
(> 5 nm).

𝑘i

Side view



Surface structure analysis

For 30 keV electron, 𝜆 = 0.071 Å

If we take 𝑎 ≈4 Å,
|𝑘i|

a∗ = 56

𝛽 ≈ 0.018 rad
𝛼 ≈ 0.00032 rad

𝛼

𝛽
= 0.018

1st row

2nd row

𝑘𝑖

𝛼

𝛽

𝛽 = arcsin
𝑎∗

𝑘𝑖
, 𝛼 = arctan

𝑎∗

cos 𝛽 𝑘𝑖 −𝑏∗
− 𝛽

𝑎∗

𝑏∗

Separation 
proportion to 𝑎∗.

Separation 
negligible.



Surface structure analysis
Al2O3 triangular lattice

Ԧ𝑎∗

𝑏∗

(1,0)(0,0)(-1,0)

Ԧ𝑎∗

𝑏∗

(2,-1)(0,0)(-2,1)

Al2O3 and Fe2O3 have similar triangular lattice.
The lattice constant of Al2O3 is slightly smaller, which is 
consistent with the observation.



Epitaxial relation analysis

Al2O3 (001) and Fe3O4 (111) both have triangular lattice.

From the RHEED pattern, the basis of the two lattices are 
rotate by 30 (or 90) degree.

Fe3O4

Al2O3



Conclusion

• Basic kinematic diffraction theory is reviewed.

• Two dimensional diffraction geometry for RHEED is 
discussed

• Analysis of surface morphology, structure, and 
epitaxial relation is introduced.


