Reflection High Energy Electron Diffraction (RHEED) basics

Xiaoshan Xu
2017/07/26

Cullity, B. D. (1956). Elements of X-ray diffraction. Reading, Mass.: Addison-Wesley Pub. Co. Wang, Z. L. (2011). Reflection Electron Microscopy and Spectroscopy for Surface Analysis.

Cambridge, GBR: Cambridge University Press.

Diffraction of crystal planes: real space

The difference between the two beam path is:

$$
2 d \sin (\theta)
$$

Bragg's law: The diffraction has maximum when

$$
2 d \sin (\theta)=n \lambda
$$

Diffraction of crystal planes: wave vectors

\vec{k}_{i}, \vec{k}_{d} : wave vectors of the incident and diffracted beams.

$$
\left|\vec{k}_{\mathrm{i}}\right|=\left|\vec{k}_{\mathrm{d}}\right|=\frac{2 \pi}{\lambda}
$$

Rewrite Bragg's law:

$$
\begin{gathered}
2 d \sin (\theta)=n \lambda \\
2 d \frac{\left|\vec{k}_{\mathrm{d}}-\overrightarrow{\mathrm{k}}_{\mathrm{i}}\right|}{2\left|\vec{k}_{i}\right|}=n \lambda \\
\left|\overrightarrow{k_{i}}\right| \lambda=2 \pi \\
\left|\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right|=n \frac{2 \pi}{d}
\end{gathered}
$$

What's $\frac{2 \pi}{d}$?

$$
\left|\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right|=n \frac{2 \pi}{d}
$$

Real space

Reciprocal space

$$
\begin{aligned}
& \vec{a}^{*}=2 \pi \frac{\vec{b} \times \vec{c}}{(\vec{a} \times \vec{b}) \cdot \vec{c}}=\frac{2 \pi}{a} \hat{x} \\
& \vec{b}^{*}=2 \pi \frac{\vec{c} \times \vec{a}}{(\vec{a} \times \vec{b}) \cdot \vec{c}}=\frac{2 \pi}{b} \hat{y} \\
& \vec{c}^{*}=2 \pi \frac{\vec{a} \times \vec{b}}{(\vec{a} \times \vec{b}) \cdot \vec{c}}=\frac{2 \pi}{c} \hat{z}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{b}^{*}=2 \pi \frac{\vec{c} \times \vec{a}}{(\vec{a} \times \vec{b}) \cdot \vec{c}}=\frac{2 \pi}{b} \hat{y} \\
& \vec{a}^{*}=2 \pi \frac{\vec{b} \times \vec{c}}{(\vec{a} \times \vec{b}) \cdot \vec{c}}=\frac{2 \pi}{a} \hat{x}
\end{aligned}
$$

a
Example: the (110) plane

$$
\begin{gathered}
d_{(110)}=\frac{a b}{\sqrt{a^{2}+b^{2}}} \\
\frac{2 \pi}{d_{(110)}}=2 \pi \frac{\sqrt{a^{2}+b^{2}}}{a b}
\end{gathered}
$$

The reciprocal vector (110)

$$
\left|\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right|=n \frac{2 \pi}{d}
$$

$$
\left|\vec{k}_{d}-\vec{k}_{i}\right|=|\vec{G}|
$$

$$
\left|\vec{G}_{(110)}\right|=\left|\vec{a}^{*}+\vec{b}^{*}\right|
$$

$$
=\left|\frac{2 \pi}{a} \hat{x}+\frac{2 \pi}{b} \hat{y}\right|
$$

$$
\frac{2 \pi}{d_{(110)}}=\left|\vec{G}_{(110)}\right|
$$

$$
=2 \pi \frac{\sqrt{a^{2}+b^{2}}}{a b}
$$

$$
\vec{G}=h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*}
$$

$$
h, k, l \text { are integers (Miller indices). }
$$

$$
\left|\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right|=|\vec{G}|
$$

$$
\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}
$$

$\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}$ is along the normal of crystal plane. So,

$$
\begin{aligned}
\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}} & =\vec{G} \\
2 d \sin (\theta) & =n \lambda
\end{aligned}
$$

$$
\vec{G}=h \vec{a}^{*}+k \vec{b}^{*}+l \vec{c}^{*}
$$

$$
h, k, l \text { are integers (Miller indices). }
$$

Crystal diffraction in reciprocal space

$$
\begin{aligned}
2 d \sin (\theta) & =n \lambda \\
\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}} & =\vec{G}
\end{aligned}
$$

In reciprocal space,

1) Draw a circle, using the origin of \vec{k}_{i} as the center and $\left|\vec{k}_{i}\right|$ as the radius.
2) Draw \vec{k}_{i} on the circle
3) Move the circle so that the tip of \vec{k}_{i} is at the origin the reciprocal space.
4) The reciprocal lattice points that fall on the perimeter of the circle correspond to diffraction conditions.

A cross section of the Ewald sphere
in 3D reciprocal space.

Example, (00L) diffraction

$$
\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}=(00 l)
$$

Contribution from individual atoms to diffraction

Phase change:

$$
\begin{gathered}
2 \pi \frac{|\vec{R}| \sin (2 \theta)}{\lambda}=\frac{2 \pi}{\lambda}|\vec{R}| 2 \sin (\theta) \cos (\theta) \\
=\left|\vec{k}_{\mathrm{i}}\right||\vec{R}| 2 \sin (\theta) \cos (\theta) \\
=\left|\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right||\vec{R}| \cos (\theta) \\
\quad=\left(\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right) \cdot \vec{R}
\end{gathered}
$$

$$
\vec{R}=u \vec{a}+v \vec{b}+w \vec{c}
$$

u, v, w are integers
$\left|\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right|=2\left|\vec{k}_{\mathrm{i}}\right| \sin (\theta)$
Every atom contributes an amplitude proportional to:

$$
\exp \left[-i\left(\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right) \cdot \vec{R}\right]
$$

Crystal diffraction and Fourier transform

Every atom contributes an amplitude proportional to:

$$
\exp \left[-i\left(\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right) \cdot \vec{R}\right]
$$

Diffraction intensity:

$$
I\left(\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right)=\left|\sum_{\vec{R}} \exp \left[-i\left(\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right) \cdot \vec{R}\right]\right|^{\vec{R}=u \vec{a}+v \vec{b}+w \vec{c}} \begin{aligned}
& \text { are the position of atoms. }
\end{aligned}
$$

This is actually a Fourier transform of the lattice from real space into the reciprocal space.

$$
\begin{aligned}
& \text { Rewrite: } I\left(\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right)=\sum_{i} \exp \left[-i\left(\vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}}\right) \cdot \vec{R}\right] \\
& I(\vec{k})=\left|\Sigma_{\vec{R}} \exp [-i \vec{k} \cdot \vec{R}]\right|^{2} \\
& \vec{R}=u \vec{a}+v \vec{b}+w \vec{c} \\
& u, v, w \text { are integers } \\
& =\left|\sum_{u, v, w} \exp \left[-i\left(k_{1} \cdot u a+k_{2} \cdot v b+k_{3} \cdot w c\right)\right]\right|^{2} \\
& \vec{k} \equiv \vec{k}_{\mathrm{d}}-\vec{k}_{\mathrm{i}} \\
& \equiv k_{1} \vec{a}^{*}+k_{2} \vec{b}^{*}+k_{3} \vec{c}^{*} \\
& =\left|\sum_{u} \exp \left[-i\left(k_{1} \cdot u a\right)\right] \sum_{v} \exp \left[-i\left(k_{2} \cdot v b\right)\right] \sum_{w} \exp \left[-i\left(k_{3} \cdot w c\right)\right]\right|^{2}
\end{aligned}
$$

Let's look at one of the sum:

$$
\sum_{u} \exp \left[-i\left(k_{1} \cdot u a\right)\right]
$$

$=N \quad$ if $k_{1} \cdot u a=\mathrm{n} 2 \pi$
$=0 \quad$ otherwise

So, after the transform:

$$
\begin{aligned}
& k_{1}=h a^{*} \\
& k_{2}=k b^{*} \\
& k_{3}=l c^{*}
\end{aligned}
$$

This is the reciprocal lattice

Fourier transform of lattice of different dimensions

$$
I(\vec{k})=\left|\sum_{u} \exp \left[-i\left(k_{1} \cdot u a\right)\right] \sum_{v} \exp \left[-i\left(k_{2} \cdot v b\right)\right] \sum_{w} \exp \left[-i\left(k_{3} \cdot w c\right)\right]\right|^{2}
$$

If the lattice is two dimensional (e.g. in the a-b plane):

$$
\vec{R}=u \vec{a}+v \vec{b}
$$

u, v, are integers to sum over
$w=0$

After the transform:

$$
k_{1}=h a^{*}
$$

$$
k_{2}=k b^{*}
$$

k_{3} is arbitrary

If the lattice is one dimensional (e.g. along the a axis):

$$
\vec{R}=u \vec{a}
$$

u, are integers to sum over
$v, w=0$

After the transform:

$$
k_{1}=h a^{*}
$$

k_{2}, k_{3} are arbitrary

Real crystal, finite size

Let's look at the sum again:

$$
\begin{array}{r}
\left|\sum_{u=1 . \mathrm{N}} \exp \left[-i\left(k_{x} \cdot u a\right)\right]\right|^{2}=\frac{\mathrm{si}}{\mathrm{~s}} \\
\text { For intensity: } \Delta k \propto \frac{1}{N^{2}}
\end{array}
$$

Thin rods

Thick rods

Reflection high energy diffraction (RHEED) geometry

Grazing (small) angle incidence

Crystal sample

Penetration depth for 30 keV electron is $L \sim 10-100 \mathrm{~nm}$.

$L \sim 10-100 \mathrm{~nm}$
$d \approx L \tan (\theta)=1.7 \mathrm{~nm}$ Assuming: $L=100 \mathrm{~nm}, \theta=1$ degree

RHEED probes the surface (2 D lattice).

Ewald sphere and reciprocal points

Reciprocal points

Cross section of Ewald sphere in 3D reciprocal space.
For 3 D real space, the reciprocal space consists of reciprocal points.
Only when the reciprocal points fall on the Ewald sphere, diffraction occurs.

Ewald sphere and reciprocal rods

Top and side view of the Ewald sphere in RHEED
For 2D real space, every reciprocal rods can intersect with the Ewald sphere, causing
 diffraction.

Diffraction pattern and reciprocal space

Why diffraction streaks?

Patches on the surface broadens the reciprocal rods.

Broadening amplified in the vertical direction due to the geometry.

What about islands?

- The horizontal dimension is not too large (<100 nm).
- The vertical dimension is not too small (> 5 nm).

Side view

Surface structure analysis

$$
\beta=\arcsin \left(\frac{a^{*}}{\left(k_{i}\right)}\right), \alpha=\arctan \left[\frac{a^{*}}{\cos (\beta)\left|\bar{k}_{i}\right|-b^{*}}\right]-\beta
$$

Separation negligible.

Surface structure analysis

e-beam $\left|\left|\mid\right.\right.$ All $\mathrm{O}_{2}<100>$

(c)

$$
(0-1)(01)
$$

e-beam $/ I$ a-Fe $\mathrm{O}_{3}<100>$

$\mathrm{Al}_{2} \mathrm{O}_{3}$ triangular lattice

$$
(-1,0) \quad(0,0) \quad(1,0)
$$

Epitaxial relation analysis

(a)
(00)
$(0-1) \quad(01)$
e-beam $/ / \mathrm{Al}_{2} \mathrm{O}_{3}<100>$
(g)

(000)
$(0-44)$
$(0-22)$

e-beam // Fe $3_{3}<-211>$
(b)
$(-21) \stackrel{(00)}{\vdots}(2-1)$
e-beam $/ / \mathrm{Al}_{2} \mathrm{O}_{3}<120>$
(h) $\begin{gathered}(0-4-4)(000) \\ (000)\end{gathered}$
(0-2-2)(022)

$\mathrm{Al}_{2} \mathrm{O}_{3}$ (001) and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ (111) both have triangular lattice.
From the RHEED pattern, the basis of the two lattices are rotate by 30 (or 90) degree.

Conclusion

- Basic kinematic diffraction theory is reviewed.
- Two dimensional diffraction geometry for RHEED is discussed
- Analysis of surface morphology, structure, and epitaxial relation is introduced.

