Reflection High Energy Electron Diffraction (RHEED) basics

Xiaoshan Xu 2017/07/26

Cullity, B. D. (1956). *Elements of X-ray diffraction*. Reading, Mass.: Addison-Wesley Pub. Co. Wang, Z. L. (2011). *Reflection Electron Microscopy and Spectroscopy for Surface Analysis*. Cambridge, GBR: Cambridge University Press.

Diffraction of crystal planes: real space

The difference between the two beam path is:

 $2d\sin(\theta)$

Bragg's law: The diffraction has maximum when

 $2d\sin(\theta) = n\lambda$

Diffraction of crystal planes: wave vectors

Rewrite Bragg's law:

$$2d \frac{\sin(\theta)}{k_{d} - \vec{k}_{i}} = n\lambda$$
$$2d \frac{\left|\vec{k}_{d} - \vec{k}_{i}\right|}{2\left|\vec{k}_{i}\right|} = n\lambda$$

$$|\overrightarrow{k_i}|\lambda = 2\pi$$

$$\left|\vec{k}_{\rm d} - \vec{k}_{\rm i}\right| = n \frac{2\pi}{d}$$

What's
$$\frac{2\pi}{d}$$
?
 $|\vec{k}_{d} - \vec{k}_{i}|$
 $\vec{c}(\hat{z})$
 $\vec{c}(\hat{z})$
 $\vec{c}(\hat{z})$
 $\vec{c}(\hat{x})$
Reciproved

$$\vec{c}^{*}(\hat{z})$$
$$\vec{b}^{*}(\hat{y})$$
$$\vec{a}^{*}(\hat{x})$$

 $=n\frac{2\pi}{d}$

Reciprocal space

$$\vec{a}^* = 2\pi \frac{\vec{b} \times \vec{c}}{\left(\vec{a} \times \vec{b}\right) \cdot \vec{c}} = \frac{2\pi}{a} \hat{x}$$
$$\vec{b}^* = 2\pi \frac{\vec{c} \times \vec{a}}{\left(\vec{a} \times \vec{b}\right) \cdot \vec{c}} = \frac{2\pi}{b} \hat{y}$$
$$\vec{c}^* = 2\pi \frac{\vec{a} \times \vec{b}}{\left(\vec{a} \times \vec{b}\right) \cdot \vec{c}} = \frac{2\pi}{c} \hat{z}$$

 $\vec{b}^* = 2\pi \frac{\vec{c} \times \vec{a}}{\left(\vec{a} \times \vec{b}\right) \cdot \vec{c}} = \frac{2\pi}{b} \hat{y}$ $\vec{a}^* = 2\pi \frac{\vec{b} \times \vec{c}}{\left(\vec{a} \times \vec{b}\right) \cdot \vec{c}} = \frac{2\pi}{a} \hat{x}$

Example: the (110) plane

$$d_{(110)} = \frac{ab}{\sqrt{a^2 + b^2}}$$

$$\frac{2\pi}{d_{(110)}} = 2\pi \frac{\sqrt{a^2 + b^2}}{ab}$$
The reciprocal vector (110)

$$|\vec{G}_{(110)}| = |\vec{a}^* + \vec{b}^*|$$

$$= \left|\frac{2\pi}{a}\hat{x} + \frac{2\pi}{b}\hat{y}\right|$$

$$= 2\pi \frac{\sqrt{a^2 + b^2}}{ab}$$

$$\vec{G} = h\vec{a}^* + k\vec{b}^* + l\vec{c}^*$$

$$h, k, l \text{ are integers (Miller indices).}$$

$$\left|\vec{k}_{\rm d} - \vec{k}_{\rm i}\right| = \left|\vec{G}\right|$$

 $\vec{k}_{\rm d} - \vec{k}_{\rm i}$ is along the normal of crystal plane. So,

$$\vec{k}_{d} - \vec{k}_{i} = \vec{G}$$
$$2d\sin(\theta) = n\lambda$$

$$\vec{G} = h\vec{a}^* + k\vec{b}^* + l\vec{c}^*$$

h, k, l are integers (Miller indices).

Crystal diffraction in reciprocal space

A cross section of the *Ewald sphere* in 3D reciprocal space.

$$2d\sin(\theta) = n\lambda$$
$$\vec{k}_{\rm d} - \vec{k}_{\rm i} = \vec{G}$$

In reciprocal space,

- 1) Draw a circle, using the origin of \vec{k}_i as the center and $|\vec{k}_i|$ as the radius.
- 2) Draw \vec{k}_i on the circle
- 3) Move the circle so that the tip of \vec{k}_i is at the origin the reciprocal space.
- 4) The reciprocal lattice points that fall on the perimeter of the circle correspond to diffraction conditions.

Example, (OOL) diffraction

 $\vec{k}_{\rm d} - \vec{k}_{\rm i} = (00l)$

Contribution from **individual atoms** to diffraction $\vec{k}_{d} \vdash \vec{k}_{i}$ $\vec{k}_{\rm d}$ $\left|\vec{k}_{\rm d} - \vec{k}_{\rm i}\right| = 2\left|\vec{k}_{\rm i}\right|\sin(\theta)$ \vec{k}_{i} Ŕ $|\vec{R}| \sin(2\theta)$ (0,0)

Phase change:

$$2\pi \frac{|\vec{R}| \sin(2\theta)}{\lambda} = \frac{2\pi}{\lambda} |\vec{R}| 2\sin(\theta)\cos(\theta)$$

$$= |\vec{k}_{i}| |\vec{R}| 2\sin(\theta)\cos(\theta)$$

$$= |\vec{k}_{d} - \vec{k}_{i}| |\vec{R}|\cos(\theta)$$

$$= (\vec{k}_{d} - \vec{k}_{i}) \cdot \vec{R}$$

$$\vec{R} = u\vec{a} + v\vec{b} + w\vec{c}$$

u, *v*, *w* are integers

$$\left|\vec{k}_{\rm d} - \vec{k}_{\rm i}\right| = 2\left|\vec{k}_{\rm i}\right|\sin(\theta)$$

Every atom contributes an amplitude proportional to:

$$\exp\left[-i\left(\vec{k}_{\rm d}-\vec{k}_{\rm i}\right)\cdot\vec{R}\right]$$

Crystal diffraction and Fourier transform

Every atom contributes an amplitude proportional to:

 $\exp\left[-i\left(\vec{k}_{\rm d}-\vec{k}_{\rm i}\right)\cdot\vec{R}\right]$

Diffraction intensity:

$$I(\vec{k}_{d} - \vec{k}_{i}) = \left| \sum_{\vec{k}} \exp\left[-i\left(\vec{k}_{d} - \vec{k}_{i}\right) \cdot \vec{R}\right] \right|^{2}$$
$$\vec{R} = u\vec{a} + v\vec{b} + w\vec{c}$$
are the position of atoms.

This is actually a Fourier transform of the lattice from real space into the reciprocal space.

Rewrite:
$$I(\vec{k}_{d} - \vec{k}_{i}) = \sum_{i} \exp\left[-i(\vec{k}_{d} - \vec{k}_{i}) \cdot \vec{R}\right]$$

 $\vec{k} = u\vec{a} + v\vec{b} + w\vec{c}$
 $I(\vec{k}) = \left|\sum_{\vec{k}} \exp\left[-i\vec{k} \cdot \vec{R}\right]\right|^{2}$
 $u, v, w \text{ are integers}$

$$= \left| \sum_{u,v,w} \exp[-i(k_1 \cdot ua + k_2 \cdot vb + k_3 \cdot wc)] \right|^2$$

 $\vec{k} \equiv \vec{k}_d - \vec{k}_i$
 $\equiv k_1 \vec{a}^* + k_2 \vec{b}^* + k_3 \vec{c}^*$

$$= |\sum_{u} \exp[-i(k_1 \cdot ua)] \sum_{v} \exp[-i(k_2 \cdot vb)] \sum_{w} \exp[-i(k_3 \cdot wc)]|^2$$

Let's look at one of the sum:

$$\sum_{u} \exp[-i(k_1 \cdot ua)]$$

$$= N \qquad \text{if } k_1 \cdot ua = n2\pi$$

$$= 0 \qquad \text{otherwise}$$

So, after the transform: $k_1 = ha^*$ $k_2 = kb^*$ $k_3 = lc^*$ This is the reciprocal lattice Fourier transform of lattice of **different dimensions**

$$I(\vec{k}) = \left|\sum_{u} \exp[-i(k_1 \cdot ua)] \sum_{v} \exp[-i(k_2 \cdot vb)] \sum_{w} \exp[-i(k_3 \cdot wc)]\right|^2$$

If the lattice is **two** dimensional (e.g. in the a-b plane): $\vec{R} = u\vec{a} + v\vec{b}$

u, v, are integers to sum over w = 0

After the transform:

$$k_1 = ha^*$$

 $k_2 = kb^*$
 k_3 is arbitrary

If the lattice is **one** dimensional (e.g. along the a axis): $\vec{R} = u\vec{a}$

u, are integers to sum over v, w = 0

After the transform: $k_1 = ha^*$ k_2, k_3 are arbitrary

Reflection high energy diffraction (RHEED) geometry

Ewald sphere and reciprocal points

Reciprocal points

Cross section of *Ewald sphere* in 3D reciprocal space.

For 3 D real space, the reciprocal space consists of reciprocal points.
Only when the reciprocal points fall on the *Ewald sphere*, diffraction occurs.

Ewald sphere and reciprocal rods

Top and side view of the *Ewald sphere* in RHEED

For 2D real space, **every** reciprocal rods can intersect with the *Ewald sphere*, causing diffraction.

Diffraction pattern and reciprocal space

Why diffraction streaks?

Patches on the surface broadens the reciprocal rods.

Broadening amplified in the vertical direction due to the geometry.

What about islands?

- The horizontal dimension is not too large (<100 nm).
- The vertical dimension is not too small (> 5 nm).

Surface structure analysis $\beta = \arcsin\left(\frac{a^*}{|\vec{k}_i|}\right), \alpha = \arctan\left[\frac{a^*}{\cos(\beta)|\vec{k}_i|-b^*}\right] - \beta$ } α Separation a^* \vec{k}_i Separation negligible. β proportion to a^* . b^* 1st row 2nd row For 30 keV electron, $\lambda = 0.071$ Å If we take $a \approx 4$ Å, $\frac{|\vec{k}_i|}{a^*} = 56$ $\beta \approx 0.018 \text{ rad}$ $\alpha \approx 0.00032$ rad = 0.018

Epitaxial relation analysis

 Al_2O_3 (001) and Fe_3O_4 (111) both have triangular lattice.

From the RHEED pattern, the basis of the two lattices are rotate by 30 (or 90) degree.

Conclusion

- Basic kinematic diffraction theory is reviewed.
- Two dimensional diffraction geometry for RHEED is discussed
- Analysis of surface morphology, structure, and epitaxial relation is introduced.